University of Nebraska - Lincoln

Digital Commons@University of Nebraska - Lincoln

Computer Science and Engineering: Theses,

. . Computer Science and Engineering, Department of
Dissertations, and Student Research P & & TP

8-2012

Statistical Software Properties: Definition,
Inference and Monitoring

Javier A. Darsie
University of Nebraska-Lincoln, javier.darsie@gmail.com

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

b Part of the Computer Engineering Commons, and the Computer Sciences Commons

Darsie, Javier A., "Statistical Software Properties: Definition, Inference and Monitoring" (2012). Computer Science and Engineering:
Theses, Dissertations, and Student Research. 48.
http://digitalcommons.unl.edu/computerscidiss/48

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at Digital Commons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of Digital Commons@University of Nebraska - Lincoln.

www.manharaa.com

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/48?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages

STATISTICAL SOFTWARE PROPERTIES:
DEFINITION, INFERENCE AND MONITORING

by

Javier Darsie

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Sebastian Elbaum

Lincoln, Nebraska

August, 2012

www.manharaa.com

STATISTICAL SOFTWARE PROPERTIES:
DEFINITION, INFERENCE AND MONITORING

Javier Darsie, M. S.

University of Nebraska, 2012

Adviser: Sebastian Elbaum

Software properties define how software systems should operate. Specifying cor-
rect properties, however, can be difficult and expensive as it requires deep knowledge
of the system’s expected behavior and the environment in which it operates. Au-
tomated analysis techniques to infer properties from code or code executions can
mitigate that cost, but are still unable to go beyond state properties and the simplest
patterns of temporal properties. This limitation renders properties that sacrifice fault
detection power.

To address this problem, we introduce a new type of software properties called
statistical properties, which characterize significant statistical relationships among
the values of variables across program states. We define an approach to infer these
relationships automatically and support their monitoring while controlling the trade-
offs between overhead and the precision and recall of the inferred properties.

We perform several experiments to assess the approach in the context of dis-
tributed robotics applications. Our findings indicate that the inferred statistical
properties can be use to generate precise and cost-effective models capable of de-
tecting faults in software systems while keeping the number of false positives close to

zero and previous knowledge of the software system design and behavior unnecessary.

www.manaraa.com

il

ACKNOWLEDGMENTS

My sincerest thanks to all those who have participated in the completion of this
thesis. I found support and encouragement from a large list of persons, which con-
tributed in many different ways, and I am sorry it is not possible to list them all on
just one page. To my family, friends and colleagues, thank you. It would not have
been possible without you.

I would like to specially thank the invaluable guidance of my advisor, Sebastian
Elbaum. Any recognition to his support and dedication will fall short. T would also
like to thank all the Computer Science faculty and staff, most specially those on my
committee, Carrick Detweiler and Matthew Dwyer, for their feedback and suggestions.

My deepest thanks to my father, mother, siblings and my beloved wife Ana,
who makes me the happiest person every single day. I would also like to thank
my school and college best friends Atuk, Berna, Emi, Ernesto, Maju, Marito, Patri,
Lucas, Juanma, Juancho, Mati, Mariano and Camilo. The students in the ESQuaReD
and Nimbus lab deserve special acknowledgement, especially Adrian, Brady, Charlie,
Elena, Katie, Rafael, Rahul, Ben, Brent, Dave, Hengle, John-Paul, Megan, Paul.
They made university felt like home.

This work was supported in part by Air Force Office of Scientific Research through
grant #9550-09-1-0687.

www.manharaa.com

v

Contents

Contents iv
List of Figures viii
List of Tables xi
1 Introduction 1
1.1 Motivating Example oo 3
1.1.1 State Propertieso 5

1.1.2 Temporal Properties)

1.1.3 Probabilistic Temporal Properties 7

1.1.4 Statistical Properties o0 8

1.2 Research Contributions 10
1.3 Thesis Overview e 11

2 Background and Related Work 12
2.1 Software Properties oo 12
2.1.1 Program State. 13

2.1.2 Transition Systems 13

2.1.3 State Properties oo 15

www.manharaa.com

2.1.4 Temporal Properties 17
2.1.4.1 Computation Trees and Paths 19

2.1.5 Probabilistic Temporal Properties 21

2.2 Automatic Inference of Software Properties 22
2.3 Run-time Verification of Software Properties 25
3 Statistical Properties 28
3.1 Definitiono 28
3.2 Approaches for Inferring and Monitoring 32
3.2.1 Statistical Properties Templates 34
3.2.1.1 Spearman’s Rank Correlation Coefficient 35

3212 Meano 36

3.2.1.3 Setting Maximum and Minimum Windows 36

3.2.1.4 Update Policies 37

3.22 Inference 39
3.2.3 Monitoringo 44

3.3 Tool e 46
3.3.1 Statistical Properties 46
3.3.2 Execution Traces and Models Format 48
3.3.3 Property Violation Report 49

4 Assessment 50
4.1 Artifacts, Tasks and Scenarios 52
4.1.1 Garcia Robot - Wall Following 54
4.1.2 Hummingbird - Ranger Height Controller 58
4.1.3 Hummingbird - Vision Height Controller 60

4.2 Experimental Setupo 61

www.manharaa.com

vi

4.2.1 Measurements and Treatments 61

4.2.2 Execution Traces Collection 63

4.3 Results 64
4.3.1 Artifacts Modelso oo 65

4.3.1.1 Effect of Alpha 67

4.3.1.2 Effect of the Training Set Size 68

4.3.1.3 Effect of the Statistical Functions 70

4.3.1.4 Noticeable True Negatives 71

4.3.1.5 Noticeable False Positives 72

4.3.2 Cost of Training oL 73

4.3.2.1 Effect of Alpha 74

4.3.2.2 Effect of the Training Set Size 75

4.3.2.3 Effect of the Statistical Functions 76

4.3.3 Cost of Monitoring 77

4.3.3.1 Effect of Alpha 78

4.3.3.2 Effect of the Training Set Size 80

4.3.3.3 Effect of the Statistical Functions 81

4.4 Alternative Methods 81
4.5 SUMMATY oo 87

5 Conclusions and Future Work 89
A Statistical Tables 92
B Ranger Height Controller System 94
C Vision Height Controller System 101

www.manharaa.com

vii

Bibliography 108

www.manharaa.com

viil

List of Figures

1.1 Asctec Hummingbird quad-rotor 3
1.2 Graph representation of the distributed system under analysis 4
2.1 Program states of a stateless system 14
2.2 Program states of a transition system L. 15
2.3 State properties representationo 16
2.4 Temporal properties representation 19
2.5 A sample computation tree 20
2.6 A sample computation path 21
3.1 Conceptual Representation of Statistical Property over Single Variable . 30
3.2 Inference Approach 32
3.3 Monitoring Approach 33
3.4 Aggregate state representation for correlation properties 38
3.5 Architecture of Implementation L. 46
3.6 Statistical Properties Hierarchy 47
4.1 Experimental Design oo Lo 51
4.2 Garcia Robot 56
4.3 Wall Following: Training (Left) and Test (Right) Scenarios 57

www.manharaa.com

1X

4.4 Wall Following System 58
4.5 Effect of Alpha on Fault Detection Effectiveness 67
4.6 Effect of the Training Set Size on Fault Detection Effectiveness. 69
4.7 Effect of the Statistical Function on Fault Detection Effectiveness 70
4.8 Effect of Alpha on Cost of Training 74
4.9 Effect of the Training Set Size on Cost of Training 76
4.10 Effect of the Statistical Function on Cost of Training 78
4.11 Effect of Alpha on Cost of Monitoring 79
4.12 Effect of the Training Set Size on Cost of Monitoring 80
4.13 Effect of the Statistical Function on Cost of Monitoring 82

4.14 Wall Following - Comparison of inferred statistical properties against state
properties inferred through Daikon using different training set sizes . . . 84
4.15 Ranger Height Controller - Comparison of inferred statistical properties
against state properties inferred through Daikon using different training
Set SIZES oL L 85
4.16 Visual Height Controller - Comparison of inferred statistical properties

against state properties inferred through Daikon using different training

Set SIZES 86
B.1 PID Controller Subsystem 95
B.2 Ranger Subsystem 96
B.3 User Commands Subsystem 97
B.4 Serial Communication Subsystem - Part 1 98
B.5 Serial Communication Subsystem - Part 2 99
B.6 Serial Communication Subsystem - Part 3 100
C.1 PID Controller Subsystem 102

www.manaraa.com

C.2 Pressure Subsystem 103
C.3 Radius Subsystemo 104
C.4 Serial Communication Subsystem - Part 1 105
C.5 Serial Communication Subsystem - Part 2 106
C.6 Serial Communication Subsystem - Part 3 107

www.manharaa.com

X1

List of Tables

1.1 Property Types Comparison 10
4.1 Experiments Artifacts L 53
4.2 Experiments Taskso 55
4.3 Generated models during the training phase 62
4.4 Number of Inferred Statistical Properties 65
4.5 Overhead 7
4.6 Number of Invariants Inferred by Daikon 83
4.7 Cost of Inferring and Monitoring in Seconds 87
A.1 Critical Values for Spearman’s Rank Correlation Coefficients 93

www.manharaa.com

Chapter 1

Introduction

Software properties characterize how a system operates or should operate. Such
characterization aims to capture different functional and non-functional attributes to
support various forms of validation and verification. This aim in turn influences how
the properties are specified and checked.

Consider for example, the Java construct assert(xz! =null). This construct speci-
fies a property in the code, which may have been derived by the programmer based
on his domain or program knowledge, or by an automated inference tool through the
analysis of the program structure or of some of its execution traces. This property
is represented by a boolean expression, which will be checked at run-time, raising an
exception if the subset of the program state represented by variable x is null.

Now consider the property O(Booting — (OCheckMem) which asserts that it
is always the case that C'heckMem occurs right after Booting. This is a richer
property in that it operates over a set of states, but it is also more challenging
to specify correctly as it includes richer semantics. It is also more expensive to
check as it involves keeping track of data across multiple states and may require

constructs that are not part of standard programming languages. Yet, in spite of its

www.manaraa.com

cost, such temporal properties are often critical for reactive systems that maintain
an ongoing interaction with their environment rather than produce some final value
upon termination [37].

These two sample properties illustrate some of the trade-offs to consider between
properties involving one state (state-properties) versus properties involving multiple
states (temporal-properties). Such trade-offs include the costs of correctly specifying
and checking those properties and their benefits in terms of fault detection power.

In this work we propose a new type of properties, statistical properties, that
provide an intermediate choice in this spectrum. These properties aim to capture
significant statistical relationships between a window of values of variables across
multiple program states which makes them interesting from several perspectives.

Statistical properties have several interesting attributes. First, they are a natural
match for systems that have a distribution of outputs or events that can be statisti-
cally fitted such as those systems that employ control algorithms or planners, or that
propagate messages across distributed and independent components in a somewhat
consistent manner. Second, they can be inferred with similar effectiveness and level of
automation as state-properties, avoiding some of the challenges involved in inferring
the more complex temporal properties. Third, they offer simple and intuitive param-
eters that can be adjusted to meet monitoring costs, and can be easily extended by
providing more statistical relationships.

Statistical properties, however, are not always appropriate or efficient. Properties
that cannot be easily map to a distribution or statistical relationship may be more
appropriate for other types of representation. Statistical properties are also not rich
enough to capture relationships that include implicit system variables such as time

or locality, and may become impractical in the presence of many events.

www.manaraa.com

Figure 1.1: Asctec Hummingbird quad-rotor

In the rest of this chapter we define the problem in more detail, illustrate our

approach, and detailed the contribution of the work.

1.1 Motivating Example

Consider a system that controls a quad-rotor helicopter like the one shown in Figure
1.1. The software system enables a pilot to move the quad-rotor using a joystick
controller and it includes a height controller that automatically adjusts the quad-
rotor thrust to maintain a target height without human intervention. Figure 1.2
shows a graph of the software components. Each vertex corresponds to a component
of the distributed system and the edges specify the type of message sent between
components. So, for example, the vertex /asctecjoy corresponds to the component in
charge of transforming raw data from the joystick controller into commands, and the
edge with the label /TargetHeight represents messages that set the target height.
Specifying and monitoring properties of this type of systems is difficult because
their interaction with rich physical environments leads to many potential scenarios
where properties can be easily over or under specified. Another difficulty is that
the sensory information that the systems collect is often noisy, which is particularly

problematic.for tools.trying to automatically infer properties from run-time data.

www.manaraa.com

JRemoteATCommand

/zigbeeRanger

[FilteredUp

fFilteredDown

- Jmavfcmd_thrust
[TargetHeight -
Jasctec/CTRL_INPUT
jasctec/LL_STATUS
Jasctec/IMU_CALCDATA

Jmav/cmd_pitch

JAsctecProc JAutoPilot

Figure 1.2: Graph representation of the distributed system under analysis

Consider the zigbeeRanger component (Figure 1.2) which constantly receives raw
data about the quad-rotor’s distance to the floor and publishes the filtered distance
value. The process to produce the filtered distance is triggered whenever a message
containing the raw distance, /ADCS3, is received (the content of messages with label
/ADC2 is ignored by the system and does not have any impact in the component
behavior).

Since changes in the environment can cause abrupt changes in the ranger’s read-
ings, the filtering process reduces the variance of the raw height data it receives. This
process is as follows. First, raw distance readings are stored in a queue and the av-
erage of the raw readings received in the last s seconds is calculated. Then, for each
raw value in the queue (starting from the most recent value), the absolute value of the
difference between average and raw is calculated and compared against a constant
threshold. 1If the difference is lower than threshold, raw is considered noise-free and
it is used to compute the filtered distance, where filtered distance is the average of
the latest 3 noise-free raw distances. Given this explanation, it seems that a strong
property of the zighee ranger component must capture the fact that filtered distance

is a function of the raw height values, and threshold.

www.manharaa.com

1.1.1 State Properties

State properties can characterize the set of valid program states of software systems
by describing the correct values of its state variables and the relationship between
them using propositional or first-order logic. They can be specified by someone with
previous knowledge of the system or automatically inferred by program analysis tools
that instantiate predefined property templates with the program variables and their
values collected at run-time.

Consider for example a proposition like raw— filtered < threshold. This property
would be effective in discovering outliers in the raw readings and could be generated by
automatic inference generation tools like Daikon[21]. However, the effectiveness of this
characterization relies heavily in the choice of threshold which may be problematic
to determine automatically for systems like this where the data is noisy. Also, the
relationships between variables may be more complicated and only hold for some
scenarios (e.g., it may not hold if the quad-rotor is on the ground), which further
challenges inference tools.

Last, state properties will be unable to capture anomalies that manifest across

several states, like when the UAV oscillates without converging to the target height.

1.1.2 Temporal Properties

Temporal properties are those that can be described using first-order logic or temporal
logic, where each proposition contains one or more temporal operators and one or more
propositional variables which represent an event or state of the system. Temporal
properties have an implicit notion of time that allows them to reason about the

ordering of events or states.

www.manaraa.com

These properties must be specified by someone with previous knowledge of the
system or, for their simplest types (e.g., properties with just two events appearing
in specific patterns), inferred from an execution trace of the system. In the context
of the sample system under analysis, every message type could represent a propo-
sitional variable and every published message could represent an occurrence of that
proposition.

Automatic inference techniques for temporal properties try to match the relation-
ship between various types of events to a series of templates in the form of specification
patterns. For example, an instance of the Response temporal pattern [19] could be
automatically inferred for our example. This pattern states that after receiving the
raw distance to the floor (event P), the system next action is to publish the filtered
distance to the floor (event Q). Using linear temporal logic, the property specification
is defined as (P — (OQ) and should be read as it is always the case that an occur-
rence of event @ will happen immediately after an occurrence of event P. While it is
true that the automatically inferred temporal property holds, it can only judge the
behavior of the zigheeRanger component by the type of messages received and sent,
but not by of the data they transmit, which hurts fault detection when the payload
of the events is the key to the faults.

With some knowledge of the system, more meaningful properties can be defined
by defining richer propositions that represent a monotonic relationship between the
parameter values. Let’s assume that it is expected that filtered values change in the
same direction than raw values. The new propositions could represent the direc-
tion in which the value of a given parameter changes with respect to the previous
event of the same type. Therefore, given the last occurrence of event P; and the
previous occurrence of event P;_;, we could define as an occurrence of event type

PE(P Equal) when the values of P;.value and P;_;.value are the same. If P;.value is

www.manaraa.com

lower than P;_j.value, then we have an occurrence of PL(P Lower). Otherwise, the
occurred event is PG(P Greater). Once we have defined this new family of propo-
sitions, properties stating that an occurrence of PE is immediately followed by an
occurrence of QE can be defined to model the expected behavior. So, these new in-
stances of the ‘Response’ pattern are specified as (PG — OQG), O(PE — OQF)
and O(PL — OQL). The first one for example indicates that it is always the case
(O)that an occurrence of PG (the new value of raw height is greater than the previous
one) is immediately followed () by an occurrence of QG (the new value of filtered
height is greater than the previous one).

Even when the new propositions do not model the system perfectly, they are more
accurate than the one insensitive to the message data. However, the definition of this
new set of richer propositions requires someone with domain knowledge to map the
relationship between parameters to new propositions since the state of the art in

automatic inference tools cannot infer such complex properties.

1.1.3 Probabilistic Temporal Properties

Probabilistic temporal properties are described using probabilistic temporal logics.
These logics extend temporal logics by adding discrete time constraints and the ca-
pability of describing the probabilistic nature of some software systems. As systems
that define or require the specification of these behaviors are generally mission critical
and the properties quite complex, system designers with previous domain knowledge
are preferred rather than inference tools to take care of properties specification.

In the context of the sample system under analysis, let’s now suppose that the
system under analysis is considered to be more stable and the system’s developers

would like to define a less strict behavior so event () to is not required to occur

www.manaraa.com

immediately after event P. In that case, they could specify a soft deadline or property
that states that after receiving the raw distance to the floor (P) there is at least a
90% probability that the filtered distance to the floor will be published (Q) within 5
time units. Using probabilistic temporal logic, this property can be specified like this
[P = 05Q)].

As probabilistic temporal logics extend temporal logics, probabilistic temporal
properties share the benefits and downsides of temporal properties against state prop-
erties. Comparing probabilistic temporal properties and temporal properties, proba-
bilistic temporal properties offer more expressiveness capabilities because they provide
more branching options. While temporal properties can specify that a sequence of
event must occur in every path or at least one path, probabilistic temporal properties
can define the exact percentage of executions path in which those events must occur.
However, their specification requires a more accurate and detailed knowledge of the

system under analysis and its environment.

1.1.4 Statistical Properties

We have briefly discussed state, temporal and probabilistic temporal properties and
their trade-offs between inference cost and meaningful characterization. We believe
that statistical properties are an intermediate alternative in that trade-off spectrum.
While state properties rely on propositional formulae and ignore the execution his-
tory, temporal properties rely on abstract states derived using the execution history,
and probabilistic temporal properties offer a larger expressiveness power at cost of
little inference automation, statistical properties model the system behavior by find-
ing significant statistical relationships between a window of values of a set of state

variables.

www.manaraa.com

In the same way as state and temporal properties automated inference tools try
to find instances of predefined property templates using execution data, inference of
statistical properties tries to find instances of statistical relationships between vari-
ables and their values. For example, the subsystem under analysis is a potential
candidate for the correlation template property. To determine if raw and filtered
are an instance of this property, our approach keeps two windows of their values
and calculates the correlation coefficient between those two windows every time new
values are assigned to both of them. The property is discarded if a statistical test
determines that it cannot be assured that the correlation relationship does not exist
by chance.

Contrary to state property raw — filter < threshold, the power of the statistical
property correlation is less dependent on the quality of the test suite and it can adapt
easier to untested scenarios. For example, it is possible that raw — filter becomes
greater than threshold by an insignificant amount after a new target height is set.
While this is not a fault in practice, it will be considered a violation to the state
property even if it happens once. A correlation property will be robust enough to
handle that scenario because it considers the relationship between a window of values
of raw and filter. Furthermore, a state property would not capture that the quad-
rotor is oscillating as long as each individual state does not violate a state property.
A statistical property describing the correlation between these variables may expose
this undesired behavior.

The robustness comes at a cost. The computation of the correlation coefficient
is more costly than the proposition raw — filter < threshold, which increases the
inferring and monitoring time of the correlation property. Still, in general, the in-
ference is less costly for statistical properties than temporal properties because the

latter have to keep track of an undetermined number of program states to discard

www.manaraa.com

10

Property Type

Attributes State Temporal Probabilistic Statistical
Temporal

Number of : .
States One Multiple Multiple Bounded
Expressiveness | Low High High Medium
Logic Propositional | Temporal Probabilistic | First Order
Automation . . .
Support High Medium Low High
Inference . . .
Cost Low High High Medium
Monitoring . . .
Cost Low High High Medium

Table 1.1: Property Types Comparison

an instance of a property template. The monitoring cost of temporal properties and
probabilistic temporal properties is proportional to their complexity which is deter-
mined by the number of variables, states, and temporal operators. For statistical
properties, the cost is fixed and adjustable, and most statistical functions can be
computed incrementally.

In order to concisely position statistical properties in the software properties spec-
trum, Table 1.1 summarizes the main attributes and trade-offs of each type of software
properties that we have discussed in this section. The column corresponding to sta-
tistical properties contains our claims about them and the other columns provide an

approximation of the attributes of the other types of properties.

1.2 Research Contributions

In this work we present statistical properties that can be inferred and monitored

automatically and cost-effectively. Concretely, our contributions are:

www.manaraa.com

11

e Formal definition of statistical properties, their constituent elements, and the
explanation of how overhead and fault detection power can be adjusted to satisfy

the needs of their users.

e Development of a dynamic analysis approach to infer statistical properties, op-

timize their window size, and monitor them.

e The inference and monitoring approach, including a mechanism to build and
refine models of software systems, and a framework to extend the approach by

adding statistical properties defined by third parties.

e Study of the cost-effectiveness of statistical properties in generating models for
3 distributed robotics systems. The results indicate that precision, recall and
overhead can be manipulated to achieve a desired range of performance. Com-
parison between the cost of inferring and the fault detection power of properties

generated by our tool against Daikon, a state properties inference tool.

1.3 Thesis Overview

After introducing statistical properties and their trade-offs against state and temporal
properties, the rest of the thesis is organized as follows. Chapter 2 presents related
work pertaining to the inference and monitoring of software properties. In Chapter 3
we formally define statistical properties and provide the details of the inference and
monitoring processes. We also present a tool that implements our approach. Chapter
4 presents the results of a study performed to evaluate if statistical properties are able
to effectively model distributed robotics system by distinguishing correct and faulty
behaviors. Chapter 5 discusses the conclusions of this work and outlines our plans

for the future of this work.

www.manaraa.com

12

Chapter 2

Background and Related Work

This chapter focuses on introducing the three types of software properties that have
kept the attention of researchers: state properties, temporal properties and proba-
bilistic temporal properties. These types of properties have being shown to be useful
in characterizing the behavior of software systems in many situations, have been tar-
geted for inference, and used extensively in the context of run-time verification. This
chapter defines these types of properties and presents previous research efforts to infer

and verify software properties.

2.1 Software Properties

To fully position statistical properties in the cost-effectiveness trade-off spectrum,
we first introduce the definition of program state and transition systems, and then

present state and temporal properties along with their benefits and limitations.

www.manaraa.com

13

2.1.1 Program State

At a specific time ¢, a state s of a given program S that has a set of state variables X,
is defined as the set of key-value pairs such that the key component refers to a state
variable x € X and the value component v(x) represents the current value of x. The
set of state variables is frequently defined as a subset of all program variables and
the criteria to select them depends heavily on the characteristics and/or behavior of

each program.
Definition (Program State) Given system S = (X, D, dom) where:

1. X is the finite set of state variables of S,
2. D or domain is a non-empty set of values,

3. dom is a mapping from X to the set of non-empty subsets of D. For each state

variable z € X, the set dom(z) is called the domain for x.

then, state s of system S is a function d : X — D such that for every x € X and

its value v(x), v(z) € dom(z). [31]

The previous definition implies that every program, at every moment, is in one
and only one state defined by the values of its state variables.

As an example of program state, if a given system has state variable x € X and
domain D C N then it is possible to define state s; = {(z,1)} if x = 1 at time ¢ or

state s, = {(z,0)} if x = 0 at time w. Figure 2.1 illustrates those states.

2.1.2 Transition Systems

Transition or state-full systems need to reason about sequences of program states

and. how. they.change in time in order to achieve their goals and perform correct

www.manaraa.com

14

Sv

Figure 2.1: Program states of a stateless system

computations [37]. As their name suggests, transition systems define a set of pairs of

states called transitions that specify correct sequences of program states.

Definition (Transition System) A transition system is a tuple S = (X, D, dom, In, T)

where:

1. X is a finite set of state variables,
2. D or domain is a non-empty set of values,

3. dom is a mapping from X to the set of non-empty subsets of D. For each state

variable x € X, the set dom(z) is called the domain for x,
4. In is a set of states, called the initial states of .5,

5. T is a finite set of transitions.

A state of a transition system S is a function d : X — D such that for every
x € X and its value v(z), v(z) € dom(x). A transition is a set of pairs of states. A

transition ¢ is applicable to a state s if there exists a state s’ such that (s,s’) € T.

[31]

www.manharaa.com

15

Figure 2.2: Program states of a transition system

From the previous definition it can be observed that a transition (s, s’) determines
that state s’ is one of the valid next program states only if the current program
state is s. For example, given a sample system with program states s; = {(z, 1)},
sy = {(z,0)} and s, = {(z,—3)}, it is possible to define a potential set of valid
transitions as T' = { (s, Su), (St, Sv), (Su, St), (S, Su) }- Figure 2.2 depicts that potential
set T' as a digraph where system states are represented by the graph vertices and
transitions by the graph edges.

Usually, transition systems are able to differentiate distinct types of events. This
last point is important because transition systems move from the current state to the
next state as a consequence of internal or external events of various types. However,
not every event always triggers a transition to a different state. In practice, the next

program state is a function of the current state and the event type.

2.1.3 State Properties

The state properties of transition systems characterize their set of valid program
states by describing the correct values of their state variables and the relationship
between them. One way to perform these characterizations is by using propositional

formulae whose propositions inquire about the value of the program state variables.

www.manaraa.com

16

F = {pitch_angle>=-10 && pitch_angle<=10}

pitch_angle

=
o

time

Rl RS S S e ——

Figure 2.3: State properties representation

This is a practical way, for example, to describe invariants that should hold during the
entire program execution. Some examples include defining ranges of state variables
(altitude > 0 A altitude < 100), expected values (temperature > 50, object # null)
and relationships between variables (door_open = 1 Aaltitude = 0 or power_motorl =
power_motor2).

A more powerful option consists of defining properties using first-order logic, in-
corporating the universal quantifier V, the existential quantifier 3 and quantified vari-
ables. These additions make it possible to operate over sets of variables like for ex-
ample Vsensor € Sensors : sensor.status = ‘ok’ or Jbattery € Batteries : battery >
0.20.

Now, given a formula describing the valid program states we can check whether
a state obides to it. For example, given a sample system that has state variable
pitch_angle € X and state property Syuia = {pitch_angle > —10° A pitch_angle <=
10°} which characterizes every valid program state, it is possible to define proposi-

tional formula F' = {pitch_angle >= —10 A pitch_angle <= 10} to express the set of

www.manharaa.com

17

valid program states and define state property StateProperty = {s € S| s = F}.
Figure 2.3 illustrates an execution of this system and its corresponding state prop-
erty. As only one state variable, pitch_angle, is present in F, each dot in Figure 2.3
represents the system state (y axis) over time (x axis) and the dashed lines enclose
the valid values of pitch_angle. The crossed out dot depicts an invalid state or failure
as the value of pitch_angle is larger than 10°, which is inconsistent with property

StateProp.

2.1.4 Temporal Properties

While propositional logic is able to model systems by specifying state properties or
valid program states, propositional formulae present some limitations when modeling
complex temporal aspects of transition systems or properties that require some rea-
soning about the ordering of system transitions. Those properties, called temporal
properties, can be represented using first-order logic or temporal logics [38]. In prac-
tice, both logics can express temporal properties, but quantified variables in terms
of time quickly become cumbersome to interpret simple and readable than temporal
formulae. Temporal logics are best suited to express temporal properties of transition
systems because of their implicit notion of time.

To achieve the required expressiveness, temporal logic extends propositional logic
by including several temporal operators. Hence, temporal formulae contain both
temporal operators and propositional formulae representing a transition of the system.
In the case of linear temporal logic (LTL [37]), these temporal operators are [, ¢,
(O, U, R. The semantics of these operators given formulae A and B and an ordered

sequence of states or path m = {sg, 51, $2 ...} where s is the current state, are:

e [(always) Temporal formula A hold at all states along path 7.

www.manaraa.com

18

O (eventually) Temporal formula A hold at some state on the path .

O (next) Temporal formula A holds at the next state in 7, that is, at s;.

U (until) Temporal formula A U B holds if A holds until B occurs and if B does

not occu

R (release) Temporal formula A R B holds if whenever "B occurs at a state on
path m, A occurs before. Or equivalently, either B holds globally on the path,

or A occurs before the first state at which B is violated.

To illustrate a simple temporal property, let’s consider a sample system with state
variable pitch_angle € X, states spove = {(pitch_angle > 0 A pitch_angle <= 10)
V (pitch_angle >= —10 A pitch_angle < 0)}, Sno.move = {pitch_angle = 0}, initial
state In = {Snomove }, transitions T = { (Smoves Sno.move), (Snomoves Smove)} and able
to process events of type ObstacleDetected. Then, we can define temporal formula
F = O(ObstacleDetected — () Snomove) that expresses that it is always the case (O
operator) that an occurrence of event Obstacle Detected implies that the next state
(O operator) iS Spomove- Then, given a sequence of states m = sg, S1,S2 ... we can
define temporal property TempProp = {s; € 7| s; E F'}.

Figure 2.4 shows this last example where black circles represent the program
state and the white circles the occurrence of event Obstacle Detected. The solid lines
represent the fact that, according to the specified temporal property, an occurrence
of ObstacleDetected has to be followed by a transition that sets the system state to
Sno.move- Lhe crossed out circle depicts a violation of the property.

Specifying temporal properties is hard [28]. To address that challenge, researchers
have created various mechanisms to facilitate their development. For example, Dwyer

et al. [19] have developed a framework of frequently appearing patterns in properties

www.manaraa.com

19

GEJ F = O(ObstacleDetected = O Sno_move)
©
e
€
)
>
)
Smove |@---@-------o- @ ----omemeeeenes @--------- x -----
Sno_move |----------= - { JEEEEEERERED 7—. ------------ /— -----
ObstacleDetected | =« nmnemmnmmmaneanaaans O ST T T rr—— o ST
event sequence

Figure 2.4: Temporal properties representation

specification focus on the matching of problem characteristics to solution strategies.
Another example is the creation of specification languages [14] [33] which provide
built-in higher-level operators or abstractions designed to facilitate the specification

of temporal properties.

2.1.4.1 Computation Trees and Paths

A practical way to facilitate the analysis of the behavior of transition systems, and
consequently their properties, is by constructing their corresponding computation
tree [20]. A computation tree defines the set of all possible executions of a transition
system by representing the states s of system S as the tree nodes and the applicable
transitions (s, s’) € T as its edges.

Consider the sample system again, we can construct its computation tree as shown
in Figure 2.5. This graph allows us to understand that (R, @), (R, P), (P,R), (Q, R)
and (Q, P) are the applicable transitions 7" of the system. Not only that, it tells us

that to reach P we need to go first through R and then through Q.

www.manharaa.com

20

| | |
| | |
Y Y \

Figure 2.5: A sample computation tree

By constructing the computation tree of a transition system it is also possible to
define every computation path of the system. A computation path is a sequence of
nodes such that for all i we have (s;,s;,41) € T. If the sequence is finite then there
exists no state s such that (s,, Sre0t) € T. A computation path is any maximal se-
quence of states through which a computation may go by applying the transitions.
Computation trees are a convenient representation of the possible temporal behav-
iors of transition systems, since assertions about possible temporal behaviors can be
conveniently formulated as properties of computation paths or the states on those
paths. In fact, linear temporal formulae express temporal properties of the system
computation paths.

Figure 2.6 shows a sample computation path. In this case, the graph illustrates
that the sequence of states that the system went through was (R, Q, P, R, Q, P).

While it is true that temporal formulae can define temporal properties of transi-

tion systems and computation trees can also be used to verify that a given temporal

www.manharaa.com

21

Figure 2.6: A sample computation path

formula holds during the system execution, in practice, a problem called ‘state explo-
sion” compromises the efficiency of validating temporal properties. This problem is
caused by the fact that computation trees grow exponentially and even small systems
can end up building extremely large transition systems. In the case of the most typical
transition systems, reactive systems, this situation gets worse given the unpredictable
ordering of external events that force the consideration of every single transition. In

the systems that we study, such trees contain billions of states.

2.1.5 Probabilistic Temporal Properties

While temporal properties can express conditions that must hold in every or at least
one path, they cannot state that a property must hold for a certain portion of the
computations, for example, 50% of the system executions. Properties that encode
the probability of making a transition between states instead of simply the existence
of such a transition are called Probabilistic Temporal Properties and can be specified

using probabilistic temporal logics such as Probabilistic Computation Tree Logic [26]

(PCTL), PCTL* [10] or CSL (Continuous Stochastic Logic) [11] [9]. Probabilistic

www.manaraa.com

22

temporal logics usually extend a temporal logic. Therefore, besides the operators
these logics define, probabilistic temporal formulae also include state propositions
and temporal operators. In the case of PCTL, it also includes timing constraints that
bound the occurrence of events. This logic treats time as a discrete unit where each
time unit correspond to one transition along the execution path.

Probabilistic temporal properties are used to specify the behavior of real-time
distributed systems where probability represents a tool to analyze their performance
[42]. Some examples of probabilistic temporal properties are ‘with at least 50% prob-

ability p will hold within 20 time units (F5;p)’ and, ‘with at least 99% probability ¢

will hold continuously for 20 time units (;8999). Probabilistic models are specified

using discrete-time Markov chains (DTMCs) or Markov decision processes (MDPs).
The first type specifies the probability (s, s’) of making a transition from state s to
some target state s’, where the total probabilities of reaching the target state is 1.
The latter type of models extends DTMCs by allowing non-deterministic behavior.
In spite of the more expressiveness power of probabilistic temporal properties,
there are theoretical results indicating that the problem of learning transitions prob-
abilities to automatically infer probabilistic temporal formulae is hard [6] [29]. There-
fore, researchers have developed specification pattern system of common probabilistic
properties to help practitioners formulate these properties correctly [24]. In addition,
checking that probabilistic properties are being meet is also a challenging problem

because there is no a binary acceptance condition.

2.2 Automatic Inference of Software Properties

Daikon [21] is the most prominent work on automatic inference of state properties. Its

authors present it as a dynamic analysis approach to discover likely invariants from

www.manaraa.com

23

program executions. The technique consists of instrumenting the target program to
record the values taken on by a set of variables of interest, executing the instrumented
program over a test suite, and running an inference engine over the collected traces.
The inference engine identifies properties by instantiating a set of possible invariants,
testing them against the values captured from the variables of interest, and keeping
only those invariants that are never falsified.

Daikon attempts to infer invariants located in what its authors called ‘program
points’. By default, these points are procedure entries, procedures exits and loop
heads. An instrumenter injects code that records in execution traces the value of every
variable in scope when the program point is executed. The inference engine supports
several types of invariants over 1, 2 or 3 variables such as constant value, range limits,
linear relationship, functions or ordering comparison. The tool also creates ‘derived
variables’ like arrayfint], sum(array), min(array), maz(array) or size(array) which
are treated like hard coded variables when invariants are tested.

Programs instrumented by Daikon run an order of magnitude slower [21], the cost
of the inference process is hard to predict as it depends on the number of variables in
scope in each program point the size of the test suite, and the number of invariants
discovered [21].

Diduce [25] is an online dynamic invariant detector and checker capable of identify
the root of program crashes. Diduce instruments read/write operations and methods
invocation of the target program to derive invariants (tracked expressions). Each
instrumented program point has a set of associated expressions and a counter keeping
track of the executions. Expressions are a function of the object or variable being
accessed and invariants are created from this expressions. Diduce does not consider as
a fault a single violation of an invariant. To determine faults, the invariant confidence

is checked. This metric is the ratio between the number of times that the invariant is

www.manaraa.com

24

accessed and the number of times that it was accepted. Large drops of the coincidence
indicate an ongoing violation. The reported overhead of the tool ranges from 8x and
reaches 20x.

DySy [18] is a dynamic analysis approach that makes use of dynamic symbolic
execution to discover likely invariants. Unlike other approaches, DySy does not falsify
invariants produced by predefined templates. Instead, invariants are generated by
combining concrete execution of test cases with the path conditions generated by
symbolic execution tools. In this way, DySy reduces the size of the test suite required
to obtain good invariants. While this technique is able to infer the majority of the
interesting Daikon invariants, it does not capture all of them.

Techniques that extract temporal behavior from software systems can be classified
into automaton and non-automaton based techniques. The first group of techniques
generate finite state automata (FSA) from execution traces [36] [40] [8]. Lo et al. [36]
for example presented a technique to steer the automata learner algorithm kTail [12]
by denying merge operations which produce automata that do not satisfy temporal
properties previously inferred.

Non-automaton based techniques instead infer the ordering of the system events
or states [35] [41]. Perracotta [41] is an example of non-automaton based technique.
It was inspired by Daikon and it uses a dynamic analysis approach for automatically
inferring temporal properties of software systems. The instrumenter also injects code
at all method entry and exit points and the recorded events consist of the threads
identifier, method name, and a location (entering a method or exiting the method).
Then, a set of 2 event temporal patterns are instantiated with the monitored event.
The distinctive attribute of Perracotta is that it was the first temporal properties

inference approach being able to find faults in large programs like JBoss or the Win-

www.manaraa.com

25

dows kernel. Its down-side was that it was only capable of inferring variations of the
Response pattern [19].

Javert [22] is a dynamic analysis approach to infer general temporal properties
from execution traces. Under the assumption that complex properties can be can
formed by composing instances of small generic patterns, this approach specifies ar-
bitrary size temporal properties by concatenating what the authors called micropat-
terns. Gabel it. al [23] presented an automatic dynamic technique for simultaneously
learning and enforcing temporal properties over sequences of method calls. This is
an on-line approach that operates over a short finite window of trace events and it
considers the fact that method calls usually exhibit temporal locality. Under the
assumption that common behavior represents correct behavior, its learning and en-
forcing strategies are tuned on-line by changing parameters, such as the window size,
and by analyzing the effect of the change on an objective function that defines the
tolerance to anomalies or violations. While this approach has being shown to be
useful in finding defects and code-smells related to the wrong usage of APIs, it incurs
a significant amount of overhead. Like Perracotta, this technique ignores the param-
eters of the methods invocations, losing information that encodes part of the system

behavior.

2.3 Run-time Verification of Software Properties

The aim of run-time verification techniques is to check at run-time that software
systems work in accordance to their specifications [16]. Run-time monitors are au-
tomatically generated pieces of code that check program executions against their
specification. Monitors can be embedded in the program or operated remotely by

receiving a stream of data with run-time information.

www.manaraa.com

26

The work on run-time verification undertakes two key challenges: how to specify
different types of properties for monitoring, and how to encode them to monitor them
efficiently. We discuss some attempts that have received considerable attention.

MOP [16], monitoring-oriented programming, allows the specification of proper-
ties using different formalisms such as design-by-contracts approaches (JML [34]),
temporal properties, and extended regular expressions, and generates monitors from
the specified properties. The framework integrates those run-monitors into the target
program together with custom code to handle violations to the specified properties.
JavaMop [15] takes advantage of the MOP framework by transforming properties
specified using MOP into Aspect] [30] aspects. Those aspects are synthesized into
the target program and they will act as the run-time monitors that check the program
specification. The different mechanisms to specify properties allows the verification
of both state and temporal properties.

A different approach is used in JPaX [27] to monitor temporal properties. In order
to allow the specification of complex behaviors, JPaX supports properties defined
using custom logics developed with Maude [17]. This tool also instruments the target
program, but instead of synthesizing monitors into the code, events are extracted from
the running program and sent to an observer which decides whether requirements are
violated or not.

Allan et al. [7] introduced the notion of tracematches, a run-time monitoring
approach able to detect temporal properties of AspectJ join-points executions or
patterns in the behavior of freevariables whose values are bound to the AspectJ
pointcuts of the program under analysis. Free variables allow tracematches to share
a history of their values, so monitors are able to find patters in that history of values.

Bodden et al. [13] investigated the use of Dependency State Machines to facilitate

the specification of typestate properties in a flow-sensitive manner. State machines are

www.manaraa.com

27

generally easier to understand for developers with some knowledge of state machines.
Several tools [7] [15] [32] are able to automatically convert Dependency State Machines

into flow-sensitive run-time monitors aware of the order in which events have to occur.

www.manharaa.com

28

Chapter 3

Statistical Properties

This chapter moves forward by expanding the definition of statistical properties and
detailing the types of statistical properties that we have developed. Through this
chapter we also explain our approach to infer and monitor statistical properties and

introduce a tool that implements the proposed approach.

3.1 Definition

Just like others types of software properties, the goal of statistical properties is to
model the expected behavior of the system under analysis. Once a model is created,
it can be used in many different ways. However, our main target is to check if the
modeled system is behaving as expected by, for example, automatically generating
monitors that can be checked at run-time.

Informally, we define a statistical property as a significant relationship computed
over the values of some variables across program states. In other words, given a set of
state variables and a window containing their current and previous values, a statistical

property dictates that it is always the case that a significant statistical relationship

www.manaraa.com

29

exists between those values. The significance of the relationship is determined using
statistical inference techniques that draw propositions of the collected values. The
term significant denotes that the relationship between the values of the state variables
does not exist by chance for a determined confidence level.

Four elements should be distinguished from the previous definition as they apply to
every statistical property: a statistical relationship, a set of involved state variables, a
window size, and a significance level. Any statistical relationship can be used to define
statistical properties as long as its significance can be determined. A relationship is
implemented through a statistical function that maps a set of collected variable values
to a single statistic. Depending on whether the relationship is over single or multiple
states variables, different statistical functions can be employed. For example, two
state variables should be considered if the property aims to capture the existence of
a correlation relationship, while only one is required if the property is checking that
the variable belongs to a given distribution. The window size dictates how many
previous values of the involved state variables are required to evaluate the statistical
relationship. Finally, the significance level is used to determine if the relationship
exists by chance.

Given this intuition of the definition of statistical properties, a more formal version

is provided next.

Definition (Statistical Property)

Given program S and its set of state variables X where:

1. y is a subset of the state variables X,
2. ws is the window size,

3. s, is the current state of S,

www.manaraa.com

30

altitude
mean

! —>> @ Threshold
o 05 v
:_ *)g :
L0 |
& tie 1 tin tiane i+n - i+n+1 H
© time 1 time

Figure 3.1: Conceptual Representation of Statistical Property over Single Variable

4. gws = {yn—ws .- yn} | Yi € S5,
5. stat is a statistical function that operates over 7,s and returns a statistic
6. « is the significance level

7. th = f(stat,ws,«) is a threshold value, and

oo

. F = {stat(§,s) > th}
then Statistical Prop is defined as {(Sy—uws - ..sn) E F}.

Figure 3.1 depicts how a statistical property over a single variable would be checked
in practice. The property is defined over a single state variable called ‘altitude’, the
used statistical function is ‘mean’, the windows size is 6 and the threshold value is 0.5.
For example, the first observation in the right-hard graph is derived by computing
the mean across the six values of variable altitude depicted in the left-hand graph
from time ¢; to t;.,,. The crossed out dot denotes a violation of the property because

ship is not significant for the first six elements as it is below

www.manharaa.com

31

the specified threshold, while the black dot indicates that the property was met for
the next group of values of the state variable (dashed ellipse) containing observations
Liv1 1O tiynia-

Given the space of properties defined by state and temporal properties, statistical
properties seem to reside in between as they share characteristics with both of them.
On the one hand, like state properties, statistical properties take into account the
concrete value of state variables and they could be inferred efficiently using automatic
techniques.

On the other hand, like temporal properties, the information provided by multi-
ple program states can be used to check deeper aspects of the behavior of the system
under analysis. They also share the ability to model systems composed of multi-
ple components that communicate by sequences of messages. In general, whenever
temporal properties can be applied, we conjecture that statistical properties can be
applied as well.

Statistical properties also offer distinctive characteristics. One advantage is the
possibility of tuning their overhead and strength by adjusting the significance level.
However, there is a trade-off between overhead and property strength. Using lower
significance levels will lead to the inference of weaker properties that require smaller
window sizes. Typically, a small window size is desirable as it represents less memory
consumption to store historical values and also a faster computation of the statistical
relationships. However, inferring weaker properties means greater chances for an
inferred property to be false. The opposite happens with high significance levels.
Stronger relationships are inferred, with lower false positives, but larger window sizes
are required to ensure their significance.

The following section explains how those concepts are taken into practice.

www.manaraa.com

32

significance
level

Y

Inference ».| Partial _
model 1 | Refinement
| partial
trace 1 P odel2 >
property
trace 2 |—>» instantiation o Model
property i
elimination .
trace n
window size
optimization « | partial -
| model n =
property
templates

Figure 3.2: Inference Approach

3.2 Approaches for Inferring and Monitoring

Our approaches to infer and monitor statistical properties are illustrated in Figures
3.2 and 3.3. As depicted in Figure 3.2, the input of the inference process are execution
traces, the desired significance level and a set of properties templates. Our approach
assumes that each line of an execution trace is an event and the parameters of the
events correspond to the state variables of the system. The figure shows two compo-
nents. From each trace, the first component outputs a partial model that contains a
set of inferred statistical properties with at least the significance level specified as an
input of the process.

During the first step of the inference phase, property instantiation, every pos-
sible combination of variables are instantiated as a statistical property and their
significance given the maximum windows size is determined. During the property

elimination step, statistical properties that do not achieve the minimum significance

www.manaraa.com

33

model
Monitoring
trace 1
——>»| result: ok
trace 2 |—>»
N result: nok
trace n <broken props.>

f

property
templates

Figure 3.3: Monitoring Approach

level are identified and removed. Finally, the window size optimization step performs
a binary search algorithm to find, for each statistical property, the smallest window
that maintains the required significance and also a lower overhead.

The monitoring phase, illustrated in Figure 3.3, is in charge of checking that an
execution trace under analysis respects every statistical property specified in the in-
ferred model and to determine which properties are violated. The property templates
are a required input as these templates specify the computation of each property
statistic and the statistical test used to determine their significance. While the mon-
itoring approach has been tested off-line, we think that it could be easily adapted to
be used on-line by encoding the refined model into a monitor that can be checked at
run-time.

While the main goal of this section is to provide a detailed explanation of the

dynamic analysis approach that we have developed in order to infer and monitor

www.manaraa.com

34

statistical properties from execution traces, a few concepts are introduced first to fa-
cilitate their understanding. Firstly, the characteristics of the statistical relationships
supported by our approach are listed followed by the statistical properties that we
have already developed. After that, we explain how the concept of aggregate state

helped us to deal with different update frequencies of the state variables.

3.2.1 Statistical Properties Templates

A property template should include the maximum window size, the minimum window
size, the required conditions to update its aggregate state, a procedure to measure the
statistical relationship and a procedure to check the significance of the relationship.

As we have mentioned in Section 3.1, any conclusion about the values of the target
state variables that can be statistically tested is a candidate statistical relationship
for our approach. In other words, it should be possible to determine if the relation-
ship exists by chance or not. Some examples of potentially interesting relationships
include: analysis of means, analysis of variances, correlation analysis, and covariance
analysis, or determining if a given variable or set of variables belong to a determined
distribution.

We have developed and evaluated two statistical relationships: correlation and
mean. As we will show, our choice was meant to capture some of the properties we
have informally observed in the type of robotics systems we were analyzing. The
statistical relationship established between variables determines the name of the sta-
tistical property. For example, we use the term correlation property to refer to any
statistical property that infers a correlation relationship between two state variables.

The specifics of correlation and mean properties are detailed next.

www.manaraa.com

35

3.2.1.1 Spearman’s Rank Correlation Coefficient

Correlation coefficients can describe many behaviors of the robotics systems which
are the target of our experiments. An example of correlated variables is pitchangle
and the velocity of a quad-rotor. If the pitch angle of a quad-rotor increases, then its
velocity increases as well.

There exist a number of correlation coefficients that measure the statistical de-
pendence between two variables. This basically means that they can determine the
likelihood that the values of two variables are ruled by a monotonic relationship. So,
if one variable increases its value whenever the other increases its value, then the
coefficient is positive. If one variable decreases its value whenever the other increases
its value, then the coefficient is negative. In particular, we selected the Spearman’s
Rank correlation coefficient [39] because it is a non-parametric method less sensi-
tive to non-normality in distributions. To calculate the Spearman’s Rank correlation
coefficient, the observations of each variable are ranked in ascending order and the
differences between the ranks di f f _rank of each observation on the two variables are

calculated. Then, the coefficient is the result of applying the following formula:

6 % > diff rank®

window size *(window size* —1)

Correlation Coefficient = 1 — (3.1)

To determine the significance of a correlation relationship, the threshold value
for a given window and significance level is determined using the critical values of
the Spearman’s rank correlation [5]. These values indicate the minimum correlation
coefficient to reject the null hypothesis that no correlation exists between the two
variables. Table A.1 shows the critical values of the Spearman’s rank correlation.
For example, given a window size of 10 (row) and a significance level (alpha) of 0.05

(column), the minimum correlation coefficient to reject the null hypothesis that there

www.manaraa.com

36

is no correlation between the variables is 0.564. So, if the coefficient is higher than

0.564, the relationship is significant.

3.2.1.2 Mean

This property determines if, given the mean and standard deviation of a window of
values of a single variable, the next value of the variable is within the confidence
interval for the mean determined by the significance level [39]. In the context of
robotics applications, this property could capture the behavior of many sensors. For
example, range finders may return different readings even when the robot does not
move. However, those readings should have similar values and are a potential target
of the statistical relationship of the mean property. If later, during the monitoring
phase, a value of the state variable is out of the confidence interval, it can be said

that a fault or, at least, an unknown behavior was detected.

3.2.1.3 Setting Maximum and Minimum Windows

Besides defining the statistical relationship, our approach requires new property tem-
plates that define the maximum and minimum window size they are willing to deal
with. Recall that a small minimum window size is desirable as it reduces the cost
of calculating the statistical relationship. However, the minimum window size has to
be as big as the minimum number of observations required by the statistical test to
calculate the significance of the relationship. Decreasing the maximum window size
can be used to adjust the overhead of our approach in several ways. First, the infer-
ence approach converges faster with a low difference between maximum and minimum
window size. As we performs a binary search to find the optimal window size, less
elements means less steps until the optimal is found. Second, weak properties are go-

ing to be discarded faster because smaller windows increase the value required by the

www.manaraa.com

37

significance test to reject the null hypothesis that no relationship exists between the
variables. Third, the calculation of the statistics is also faster. Less data means less

operations. However, choosing a maximum window size depends on each property.

3.2.1.4 Update Policies

Consider two variables commanded_pitch and pitch that are supposed to be correlated
but whose update frequency is 10Hz and 1Hz respectively. Let’s suppose a window
size of 10 and a system where only the last value of commanded_pitch affects the
value of pitch. Then, when pitch is changed by the 10th time, a real relationship
between the window of commanded_pitch and pitch will not be detected, even if it
really exists, as the windows of commanded_pitch and pitch contain values that may
have been generated 10 times apart.

To accommodate such potential inconsistencies, we have developed the concept of
aggregate state. This is an abstract state that stores just the relevant values, those that
are going to be used to determine if a significant statistical relationship exists. Every
statistical property has an aggregate state and each aggregate state stores a window
of values per state variable involved with the statistical property. To determine what
values are relevant, each statistical function must define a policy that specifies what
values to add to the aggregate state. These policies are defined as predicates over the
occurrence of events that update the value of the involved variables. Each property
template has to indicate under what conditions the current value of the involved state
variables are stored in the aggregate state.

Figure 3.4 provides a depiction of what state variables values are stored in the
aggregate state of correlation template properties. This figure shows the two variables
involved in the property, a and b, and their changes over the system execution. Each

circle represents a program state and the suffixes represent the order in which they

www.manaraa.com

38

Policy: a and b are copied to Agg after the
variable with lower update rate is updated

7
7
//
o
1
O
N
1
|
]
]
|
]
]
!
Y\
N

Figure 3.4: Aggregate state representation for correlation properties

occur. As seen in the figure, the current values of a and b are copied to the aggregate
state only after both variables are updated.

The case of mean properties is different because the aggregate state is updated
whenever the single state variable is updated, so no condition is set.

Every time, after all the new values are added to the aggregate state, as per
the property policy, the significance of the statistical relationship associated to the
statistical property is checked. So, if new property types are to be added to the
inference process, those properties have to define the conditions under which the
aggregate state is updated and the significance test that will check that the required

significance is achieved.

www.manharaa.com

39

3.2.2 Inference

The goal of the inference phase (Figure 3.2) is not only to identify statistical properties
but also to determine the smallest window size that minimizes overhead. From a high
level perspective, the way that our approach fulfills these objectives is by identifying
every state variable in a trace, creating every possible statistical property from the
set of state variables and the properties templates, and running an iterative process
that evaluates the significance of the candidate statistical properties until all non-
significant statistical properties are discarded and the optimal window size of the
significant ones is found. The inference process is listed in Algorithm 1.

The inputs to this process are an execution trace, the significance level of the
statistical properties and a set of statistical properties templates. The output of the
inference process is the list of inferred statistical properties or model. For each inferred
property, the model specifies the property type, state variables involved, window size
and significance level.

The first step of the inference approach is to identify all the state variables of the
program. Procedure RetrieveStateV ariables (line 3 of Algorithm 1) identifies the set
of state variables by iterating over the trace events and storing their parameter names.
Then, procedure CreateStatistical Prop creates every possible statistical property
from the set of state variables and properties templates (line 4 of Algorithm 1). The
number of statistical properties created for each template is the k-combination of
the state variables set, where k is the number of variables required by the template’s
statistical function. Procedure CreateStatistical Prop also creates the aggregate state
of each property and sets their window size to its maximum.

After that, an iterative process (lines 5-27) is launched to discard statistical prop-

erties that are not significant even when their maximum window is set and to op-

www.manaraa.com

40

Algorithm 1 Inference Phase
Require: trace, property_templates, significance_level

1: first_iteration = true

2: properties_optimized = false

3: state_variables = RetrieveStateVariables(trace)

4: properties = CreateStatisticalProp(state_variables, property_templates)
5. while —properties_optimized do

6: properties_optimized = true

7. ProcessTrace(trace, properties, significance_level)

8: for all property; in properties do

9: if —property;.signi ficant then
10: if first_iteration then
11: properties = properties - property;
12: continue
13: else

14: property;. min_window = property;.window

15: end if

16: else

17: property;.max_window = property;.window

18: end if

19: property;.window = (property;.maz_window + property;.min_window) / 2
20: if property;.max_window < property;.min_window then
21: properties_optimized = false
22: else
23: property;.optimized = true
24: end if
25: end for

26: first_iteration = false
27: end while
28: return properties

www.manharaa.com

41

timize the window size of the rest. The statistical properties elimination process is
performed only after the first iteration is completed. Procedure ProcessTrace (line
7) checks which of the properties created in line 4 are significant. The result of that
operation is stored in the attribute significant of every property. After the first iter-
ation, ProcessTrace will deem only the subset of instantiated significant properties.
ProcessTrace is listed in Algorithm 2 and explained later.

After the ProcessTrace procedure is executed for the first time, any non-significant
statistical property is discarded (line 11) and never used again. The remaining prop-
erties move to the window optimization process.

In order to determine the optimal window size for the surviving statistical prop-
erties, we use a binary-search-like algorithm (line 9 - 19). This optimization process
starts after each iteration is completed. At that point, if the statistical property to
optimize is significant, a reduction of the property window size is attempted. Oth-
erwise, the window size is increased. To reduce the window size, max_window is
set to the current window size and then the window size is set to (maz_window +
min_window)/2. To increase the window size, min_window is set to the current
window size and then the window size is set to (max_window + min_window) /2.

The optimization process continues until max_window > min_window in every
statistical property (lines 21) as it indicates that the binary search algorithm is over.
Otherwise, individual properties that reach their convergence point are marked as
optimized and not processed any more. Once the set of relevant statistical properties
is determined and their window sizes optimized, they are grouped together to define

a model.

www.manaraa.com

42

The procedure ProcessTrace (Algorithm 2) is in charge of checking, for a given
significance level and the current window size of each statistical property in properties,
if the statistical relationships are significant throughout trace. Whenever the statis-
tical relationship of a determined statistical property is not significant, the attribute

signi ficant is set to false.

Algorithm 2 Process Trace Procedure

Require: trace, properties, significance_level
1: for all event; in trace do
2: for all parameter; in event; do
3 program_state[parameter;.name] = parameter;.value
4: end for

5. for all parameter; in event; do

6

7

8

9

param_properties = properties.get(parameter;)
for all property in param_properties do
if propertyy.significant && — propertyy.optimized then
if propertyy.update AggregatedState() then

10: propertyy.signi ficant = propertyy.checkSigni ficance(signi ficance_level)
11: end if

12: end if

13: end for

14: end for

15: end for

To accomplish this, the events in trace are processed one by one. For each event,
their parameters are retrieved and the program state updated (lines 2-4) as we match
each event parameter to a state variable of the system. After that, each state variable
or event parameter is processed.

First, the list of statistical properties where parameter; is an involved variable is
retrieved (line 6). For each of those properties, if it was not marked as not significant
(line 8) and it was not marked as optimized yet, then the conditions to update the ag-
gregate state are checked (line 9). If affirmative, checkSignificance(significance_level)

is invoked. This procedure, specified by each property template, evaluates the sta-

www.manaraa.com

43

tistical relationship between the involved variables and returns true if the statistical
relationship is significant or false otherwise (line 10).

The complexity of procedure ProcessTrace depends on the templates used in
practice. Its template-independent complexity is O(ppsum * check), where check rep-
resents the complexity of procedure template.checkSigni ficance(significance level)
and ppsum is the number of times that procedure is invoked. The value of ppsum is
calculated as i zp: Ppij, Where n is the number of events in trace, p is the number of
parameters inzjllij;id ppi; is the number of statistical properties where p;; is involved.
Therefore, in the case of the correlation template, as the complexity of calculating the
Spearman’s correlation coefficient is wsxlog ws [39], where ws is the window size, then
the complexity of procedure ProcessTrace is O(ppsum x ws * log ws). If we consider
the mean template, the complexity of procedure ProcessTrace is O(ppsum * ws).
The complexity of procedure template.update AggregatedState() is constant and it is
not considered in the computation of ProcessTrace’s complexity.

The complexity of the inference process also depends on the used templates. If

we consider the correlation template, then the complexity of inferring statistical

vars

9))), where max and min are

properties is O(log(maz — min) * (ws * log ws +(

the maximum and minimum window sizes defined by template, vars the number of

vars

5) the number of statistical properties instantiated by

state properties in trace, (
procedure CreateStatistical Prop(), and ws * log ws is the complexity of procedure
ProcessTrace(). As our optimization process always lead to the worst case of the
binary search algorithm, the log(maz — min) factor represents that situation.

Our approach to filter out wrongly inferred statistical properties, listed in Algo-
rithm 3, that could be encountered in some executions traces by coincidence, consists

in the creation of a ‘refined’ model that contains only the properties found in every

single model (line 11).

www.manaraa.com

44

Algorithm 3 Model Refinement
Require: models

1: refined_model = modely;

2: for all model; in models do

3: for all property; in model; do

4: if refined_model.has(property;) then

5: new_window = property;.window

6: cur_window = refined_model.get(property;).window
7 if new_window > cur_window then

8: refined_model.put(property;, new_window)
9: end if

10: else

11: refined_model.delete(property;)

12: end if

13: end for

14: end for

15: return refined_model

It could be also the case that a statistical property is present in every model of the
set but its window size is not the same across them. In those situations, the larger
window size is kept (lines 5-11). Increasing the window size also increases the moni-
toring overhead of the property and makes it easier to achieve the desired significance
as significance tests lower the threshold to which the relationship is compared against
when the number of observations increase.

The complexity of the model refinement process is O(modprop), where modprop
is the summation of the number of properties in every model that belongs to models.
Therefore, modprop can be calculated as i i 1, where m is the number of considered

i=1j=1
models and p the number of properties in model m,.

3.2.3 Monitoring

Our approach to monitor that a given execution trace does not violate the inferred

statistical properties, Figure 3.3, is performed off-line. Algorithm 4 lists our approach.

www.manaraa.com

45

The inputs of this process are the execution trace capturing the run-time behavior
to monitor, the refined model created during the inference phase, and the properties
templates.

The monitoring phase starts by creating monitors only for the statistical properties
that were inferred (line 2) and then the optimal window size for each property, as spec-
ified in the model (lines 3-5). The monitors use the statistical function, significance
test and update policy to compute the required statistics and verify that the signif-
icance level remains above the threshold. After that, the procedure ProcessTrace
is invoked to check that the statistical relationship of each property is significant
throughout the entire trace (line 5). In this case, only one iteration is needed. Fi-

nally, an error message is printed for every violated property.

Algorithm 4 Off-line Monitoring Phase
Require: model, trace, property_templates, significance_level
. state_variables = RetrieveStateVariables(trace)
: monitors = CreateStatisticalMonitor(model, state_variables)
: for all monitor; in monitors do
monitor;.window = model.get(monitor;).window
. end for
: ProcessTrace(trace, monitors, significance_level)
. for all monitor; in monitors do
if monitor;.signi ficant == false then
print monitor; violated
end if
. end for

© 0 D U W N

— =
— O

Like the inference process, the complexity of the monitoring process depends on
the used templates. In the case of the correlation template, the complexity of mon-
itoring is O(monitors + (ws * log ws)), where monitors is the number of properties

defined by model and (ws * log ws) is the complexity of procedure ProcessTrace().

www.manaraa.com

Inference

Props. Templates

Correlation.java

Mean.java

Training.java

training traces

*.json >

>

N

refined model

Monitoring

model.txt

test traces

Y

*.json

Monitoring.java

46

»(results.txt

Figure 3.5: Architecture of Implementation

3.3 Tool

We have developed an infrastructure, using 1826 lines of Java code, in order to il-

lustrate the effectiveness of our approach. Figure 3.5 shows the architecture that

implements the inference and monitoring phases, and the mechanism we used to in-

terface with them. As we already discussed these phases before, this section explains

how these tool can be extended by adding new statistical properties and the format

of the trace and model files.

3.3.1 Statistical Properties

In Figure 3.5, the box containing classes Correlation and Mean depict the two statis-

tical properties that we have implemented. New statistical properties can be added

www.manaraa.com

47

Statistical Property
- computeStatFunction() : void
- checkSignicance() : void
- updateAggregateState() : void

Compound SingleVariable
StatisticalProperty Statistical Property
Correlation Mean

Figure 3.6: Statistical Properties Hierarchy

though a set of abstract classes that includes three core methods: computeStatFunc-
tion, checkSignificance and updateAggregateState. Custom classes should implement
those methods. Method computeStatFunction calculates and returns the value of
the statistical relationship under test. For example, in the case of the correlation
property, this method return the Spearman’s rank correlation coefficient. Method
checkSignificance should determine the significance of the current value of the sta-
tistical relationship for the current window size and significance level and returns
true if it is significant. Otherwise, it should return false. Finally, method updateAg-
gregateState should return true if the conditions to update the aggregated state are
met.

Figure 3.6 shows that class hierarchy of statistical properties that model the be-
havior of one variable should extend Single VariableStatistical Property and statistical
properties that model the relationship between two or more variables should extend

CompoundStatistical Property. Classes StatisticalProperty, Single VariableStatistical-

www.manaraa.com

48

Property and CompoundStatisticalProperty take the responsibility of optimizing the
window size, updating the aggregated state and invoking the methods implemented

by custom statistical properties when necessary.

3.3.2 Execution Traces and Models Format

The content of the execution traces should be specified using JSON [3]. We selected
JSON because is a popular light-weigh format and the high availability of libraries
that read and create JSON files. This can simplify the process of consuming execution
traces from third parties.

Listing 3.1 shows a JSON trace example where each line represents an event. The
first element of each line is a numerical identifier used to distinguish each event and
to define the ordering in which they are processed. The next element is the event
type and, lastly, the event parameters are specified.

To define this format, we followed the conventions that JSON dictates. In a
glance, JSON files are a collection of coma separated key:value pairs where strings

are quoted, colons separate keys and values and brackets indicate nested key:value

pairs.
Listing 3.1: JSON execution trace
{
’1’: { ’/motorSpeedLeft ’: {’data’:0.35} },
’27: { ’/motorSpeedRight ’: {’data’:0.346595} },
’37: { ’/leftRanger ’: {’data’:308.0} },
’4°: { ’/rightRanger ’: {’data’:0.0} 1},
’57: { ’/rightRangerAvg’: {’data’:2.52380952381} },
67 { ’/leftRangerAvg’: {’data’:307.55} }
}

Models specify the inferred properties by enumerating their property type, state

variables-invelvedswindow size and significance level as a set of comma separated

www.manaraa.com

49

values. Listing 3.2 shows two sample properties. The first line indicates a correla-
tion relationship between the parameter data of the event motorSpeedLeft and the
parameter data of the event leftRander, where the inferred optimal window size is 13
for a significance level of 0.05. The second line indicates a mean relationship between
the values of parameter data of event motorSpeedRight, where the inferred optimal
window size is 8 for a significance level of 0.05. In order to prevent having state

variables with the same name, the name of the event is attached to them.

Listing 3.2: Model Format

Correlation ,motorSpeedLeft+data ,leftRanger+data ,13,0.05
Mean, motorSpeedRight+data ,8,0.05

3.3.3 Property Violation Report

The final output of the monitoring process is a text file that lists the violated statistical
properties. Listing 3.3 show an example where the correlation property between
variables motorSpeedLeft+data and motorSpeedRight+data was violated. The report
file name results from the concatenation of the trace file name and string ‘.res’. After
the entire test trace is monitored, some scripts are executed to aggregate the data of
these reports. The output of those scripts are 2 ranks. The first one show the most
effective property in detecting true negatives and the other the statistical properties

responsible for the false positives.

Listing 3.3: Fault Report Format

Correlation ,motorSpeedLeft+data , motorSpeedRight+data

Correlation ,leftRanger4+data ,rightRanger+data

www.manaraa.com

20

Chapter 4

Assessment

A set of three experiments have been conducted in order to evaluate if automatically
inferred statistical properties are able to effectively characterize the behavior of dis-
tributed robotics systems. The effectiveness is determined by measuring the precision
and recall of the inferred statistical properties at identifying successful and faulty ex-
ecutions of three artifacts. This study also assesses the effect of different significance
levels, training set sizes, and the statistical functions used in the precision and recall
of the generated models.

The cost of generating those models and the cost of monitoring them against other
execution traces is also presented and the effect of significance, training set sizes, and
the statistical functions is analyzed as well.

All studies share the same experimental setup, depicted in Figure 4.1, and the
specific details of each experiment are discussed later in this chapter. In the figure,
rectangles with thick lines represent processes, and rectangles with thinner lines rep-
resent data. The words in italic depicts the manipulated variables. Initially, and in
accordance with the capabilities of each artifact, a particular task was chosen and

two different scenarios were selected to affect the likelihood that the artifact could

www.manaraa.com

Scenario 1

Task

Scenario 2

N SN/

Collect
Execution Traces

Collect
Execution Traces

Traceset 1 Traceset 2
A y
Classify Classify
Correct Faulty Correct Faulty

Ve /

Train Set Test Set
A\
Significance Level > Infer Prop < Property Templates
} A Y
Model —> Evaluation
4
Recall
Precision
Cost

Figure 4.1: Experimental Design

www.manharaa.com

51

52

accomplish the task successfully. While the tasks were executed by the artifacts, their
execution traces were collected and later classified as successful or faulty according to
whether or not the task objective was met. Once the execution traces of each artifact
were collected and classified, a randomly selected subset of the successful executions
was analyzed to automatically infer statistical properties of the artifact. Finally, the
generated model was used to determine if the remaining successful traces were ac-
cepted by the derived properties and if the faulty traces broke the properties in a
model. The time required to infer and monitor properties was collected to determine
the cost of each phase.

The rest of this chapter is organized as follows. First, the three artifacts utilized
in these experiments are described. Later, the experimental setup is further described
along with the execution trace collection process. Finally, the results of the training
and test phases are presented and analyzed, including a description of the generated

models and a discussion of the inferred properties violated by the test traces.

4.1 Artifacts, Tasks and Scenarios

This section briefly introduces the distributed robotics systems used to evaluate the
proposed approach, including both the hardware and software components that make
the artifacts. Also the experiments’ tasks and their outcome classification criteria are
explained.

On the hardware side, the three artifacts used in this study are existing robotics
platforms. These robotic platforms were acquired from two well-known robots ven-
dors that design robots for researchers who focus on using them, not on building
them. In this way, efforts could be concentrated on developing algorithms, controllers

and new behaviors that extend the platforms’ basic functionality. This is possible

www.manaraa.com

23

Task LOC | #Comp. | #Events | #Vars.
Wall following 1497 | 2 7 15
Ranger height controller | 6006 | 16 23 134
Vision height controller | 8387 | 17 15 98

Table 4.1: Experiments Artifacts

as both platforms provide mechanisms to retrieve sensory data and to control the
robot actuators. These robotics platforms are: the Garcia Robot [1] (Figure 4.2),
manufactured by Acroname Inc., and the AscTec Hummingbird [2] (Figure 1.1), from
Ascending Technologies which is used in two of the three experiments.

All the software components of the artifacts were developed by researchers and
graduate students of the University of Nebraska-Lincoln, as part of their daily work,
who kindly let us use them to accomplish these experiments. These components
were the artifacts under the analysis of our approach and provide the additional
behaviors, which are not provided out-of-the-box by these robotics platforms, needed
to accomplish the assigned tasks. We were not involved in the development of any of
these components and no changes were performed to run the experiments.

The software components consist of a collection of distributed ROS-based compo-
nents developed in C++. ROS [4], Robot Operating System, is a popular open source
meta-operating system. It provides a rich library of features ranging from low-level
device drivers to commonly used high-level functionality, and it wraps many popular
open source libraries used by roboticists. It also provides a publish-subscribe archi-
tecture for software modules to communicate through well-defined messages, and a
service construct for synchronous communication. This architecture hides the com-
plexity of component communication which is realized through a name-server process.

From the point of view of our approach, we have considered that messages sent

by ROS components are events that may cause a change in the system state and

www.manaraa.com

o4

the value of the messages parameters are the system state variables and their values.
We made this decision under the assumption that the information passed through
messages by the system components provides an accurate overall representation of the
systems behavior. Clearly, the variables of each component may provide additional
information, but we conjectured that the key information eventually becomes part of
messages to other components. Besides, considering internal variables increases the
cost of the approach.

Table 4.1 summarizes the artifacts under analysis. The table lists their lines
of code, the number of ROS components that conform the system, the number of
messages types, and the total number of variables across all the messages. Table 4.2
shows the artifacts, the tasks, the scenarios, assertions used to classify their traces.
More details are provided next.

We classify the executions programmatically through assertions in order to reduce
experimental noise and costs. The assertions we selected were meant to coarsely
mimic human observer who classifies executions as successful or faulty. Note that
in practice, however, more sophisticated mechanisms would be needed to classify the

system behavior.

4.1.1 Garcia Robot - Wall Following

The first artifact is built on top of the Garcia Robot, a ground customizable robot
which has a set of base configurations available to facilitate the customization expe-
rience. The offered configurations differ in the type and quantity of included sensors.
In particular, the robot used during our study is equipped with 6 IR range finders to
measure the proximity to occasional obstacles, 4 servo motors to control the wheels

and gripper, and wireless and serial communication interfaces.

www.manaraa.com

5}

Platform Task Scenarios Assertions

Straight wall

Garcia Wall following |deurrent - dtarget| < 8cm
Angled wall

|hcu7“7‘ent - hta’rget| < 15CH1

Passive pilot
p |ht - ht+0.55€c| < 5cm

Ranger height

Hummingbird
controller Aggressive pilot > htarget - Dewrrent| < Dem
Outdoors ’hcurrent - htarget‘ < 15CH1
L Vision height Ihy - hyyo5sec] < Hem
Hummingbird
controller Indoors Z ‘htarget - hcurrent| < dcm

Table 4.2: Experiments Tasks

During the first experiment, the wall following task is assigned to the Garcia
Robot. For this task, given points A and B in a wooden wall, the robot must move
from point A to point B at a distance of 20 cm to the wall. A successful execution
of this task is one in which the robot never deviates more than 8 centimeters from
the target distance. Otherwise, the execution is considered as faulty. The maximum
deviation was set to 8 centimeter according to the experience of the graduate student
that developed this system.

The scenario that altered the probabilities of successful executions was a change
in the physical environment in which the Garcia Robot performed the task. Figure
4.3 depicts this task and both scenarios. During the first scenario, the robot has to
follow a straight wall (left part of the figure). During the second scenario the wall has
a 45 degree angle, forcing the robot to change its direction (right part of the figure).
The solid arrows in the figure show the expected behavior of the robot.

To perform this task, we reused a couple of ROS components developed by a
graduate student of the University of Nebraska-Lincoln. This components add the

required functionality through the Garcia API, which offers a high-level control frame-

www.manaraa.com

56

Figure 4.2: Garcia Robot

work to sends commands through a data streaming link to the network running on
the Garcia robot.

Figure 4.4 provides a graph of the ROS components that conform the artifact
under test and how these components interact. The artifact components are rep-
resented as ellipses connected by arrows whose labels represent the messages sent
by each component. Each artifact component or ROS node is an individual operat-
ing process in charge of a specific functionality of the artifact. Their operations are
usually triggered by messages of a determined type sent from other components and
they send new messages to communicate the result of those operations. Each message

type is a well-known structure by both the sender and the receiver that define a set

of pair-value pairs.

www.manharaa.com

57

WALL

B T — GARC'A ROBOT

Figure 4.3: Wall Following: Training (Left) and Test (Right) Scenarios

In Figure 4.4 we can distinguish the two components that conform this artifact.
The first component, garciaControlNode, holds the controller that calculates the speed
of each wheel based on the IR range readings. The second component, garcialn-
terfaceNode, is an interface between the first component and the Garcia API. The
interface node sends commands to the robot to set the wheels’ speed and receives
the information collected by the robot sensors (IR range readings). These commands
do not appear in the graph as they are sent to the robot directly. The figure also
depicts the exchange of messages between the components. It can be observed that
the control node sends the adjusted speed of the wheels, motorSpeedLeft and motor-
SpeedRight, to the interface node and also that the interface node sends the range

readings, rightRanger and leftRanger, to the control node.

www.manaraa.com

o8

/leftRanger

/bottomLeftRanger

/motorSpeedLeft /bottomRightRanger

/rearLeftRanger

/garciaSynced

/frontRightRanger

/garcialnterfaceNode /rearRightRanger

/frontLeftRanger

/rosout

/rosout_agg

/stopRecord

/garciaControlNode

/startRecord

/rightRanger

/diagStatus
/rightRangerAvg
/leftRangerAvg

Figure 4.4: Wall Following System

4.1.2 Hummingbird - Ranger Height Controller

The second artifact is built on top of the AscTec Hummingbird (Figure 1.1), a quad-
rotor whose vendor also offers a number of basic configurations. The basic configu-
ration of this quad-rotor is equipped with MEMS gyro sensors, a GPS receiver, and
a barometric altimeter. More advanced configurations include a 1.6Ghz Intel Atom
processor for high computation processes such as image processing.

The task assigned to the second artifact is called Ranger height controller. The
desired behavior in this case is that, given a target height set by a pilot, the quad-
rotor should be able to maintain a target height using an ultrasound range finder
attached to the rear arm of the quad-rotor as the height data source. It is important

to point out that the pilot is still in control of the x and y position of the robot.

www.manharaa.com

29

Once the target height is reached, a successful execution should fulfill three re-
quirements. The first condition is that the difference between the target height and
the actual height of the robot reported by the range finder is never greater than 15
cm. This condition checks that the main objective of the task is achieved. The second
condition is that the difference between the actual height on time ¢ and the actual
height on time ¢ 4 0.5sec is never greater than 5 cm. This condition checks if the
quad-rotor goes up or down abruptly. The third condition is that the average differ-
ence between the target height and the current height is during the last 10 seconds
less than 5 cm. The last condition checks if the robot is constantly oscillating. If
any of these conditions is not met, the execution is considered a faulty one. These
conditions were defined after we asked the researchers who developed this system how
they determine if the system is working as expected.

The scenarios of the second experiment differed in that the quad-rotor pilot
adopted contrary attitudes. During the first scenario, pilots were instructed to only
perform slow and short maneuvers or to try to hover in place. During the second
scenario, pilots were instructed to perform full accelerations and hard brakes. This
last scenario was harder to handle by the ranger height controller because the ranger
sensor was attached to an arm of the quad-rotor, which caused abrupt changes in the
rotation angles, and consequently, in the height readings.

A total of 16 ROS components were developed for this artifact that can be grouped
into 4 subsystems. The first subsystem (Figure B.1) is a PID controller for setting
the required thrust level based on the ranger information and the target height set by
the user. A second subsystem (Figure B.2) retrieves the ranger information, filtering
it up and forwarding it to the controller. The third one (Figure B.3) processes the
user commands. As mentioned before, pilots can set the target height and control the

quad-rotor position by setting its pitch, roll and yaw angles. And the last subsystem

www.manaraa.com

60

(Figures B.4 - B.5 - B.6) handles all the in-going and out-going serial communication

from the remote computer to the quad-rotor.

4.1.3 Hummingbird - Vision Height Controller

The third artifact is also built on top of the Hummingbird platform and its task is
called Vision height controller. The desired behavior is the same as the previous task:
the quad-rotor should keep a target height without intervention of a pilot. Successful
executions are determined using the same criteria as the previous task.

One of the differences with the second artifact is that this artifact has two height
data sources. The first data source is the barometric pressure sensor included with
the quad-rotor. The second data source is the result of a computer vision process
that returns the radius of a purple ball located below the quad-rotor. A downward
video camera had been attached to the aerial vehicle and connected to an Intel Atom
processor in charge of processing the video stream in order to calculate the radius of
the purple ball. Then, the inverse relationship between the ball radius and distance
was used to calculate a estimate of the quad-rotor height and to adjust the commanded
thrust. For this to work, the pilot was instructed to control the x and y position of
the robot in order to locate it on top of the ball on the ground.

The two scenarios of the third experiment consisted of performing the experiment
inside and outside where we expected for the different the light and pressure condi-
tions to render different behaviors. The training executions were performed outdoors
and the test executions indoors. The authors of this system noticed that more con-
sistent results were observed in outdoor settings than indoor settings. Their analysis
indicated that the reason of this problem are bursts of inaccurate readings of the

pressure sensor.

www.manaraa.com

61

The 17 ROS components developed for this artifact were grouped into 4 subsys-
tems to make them more understandable. The first subsystem (Figure C.1) is a PID
controller that calculates the required thrust by fusing the data obtained from the
barometric pressure sensor and the image processing procedure. The second (Figure
C.2) and third (Figure C.3) subsystems retrieve the pressure and radius information,
filtering them up and forwarding them to the PID controller. And the last subsystem
(Figures C.4 - C.5 - C.6), which was mostly reused from the previous artifact, handles

the serial communication to and from the robot.

4.2 Experimental Setup

The experimental design is shared among the three performed experiments. It aims to
evaluate if cost-effective models of statistical properties extracted from the execution

traces of the artifacts could be built and monitored.

4.2.1 Measurements and Treatments

The effectiveness of the generated models is measured in terms of their precision and

recall at predicting faults. Precision is defined as:

TP
S0 = —————— 4.1
precision = oy (4.1)
And recall is defined as:
TP
| = ———— 4.2
Tt = TP EN (4.2)

where TP means true positives (number of successful executions that our approach

classified as correct), FP means false positives (number of successful executions that

www.manaraa.com

62

Indep. Var. Signif.| Training | Statistical
Man?pulated Model Name Legvel Set Sizeg Function
A025-T10-Fc 0.025 10% | correlation
Significance Level | A050-T10-Fc 0.050 10% | correlation
A100-T10-Fc 0.100 10% | correlation
A050-T05-Fc 0.050 5% | correlation
Training Set Size | A050-T10-Fc 0.050 10% | correlation
A050-T25-Fc 0.050 25% | correlation
A050-T10-Fc 0.050 10% | correlation
Stat. Function A050-T10-Fm 0.050 10% | mean
A050-T10-Fem | 0.050 10% | correlation & mean

Table 4.3: Generated models during the training phase

our approach classified as faulty), and FN means false negatives (number of faulty
executions that our approach classified as correct). The cost of the approach is
determined by the time required to infer statistical properties and monitor them.

Different combinations of the experiment’s independent variables were used to
evaluate their effect on the model effectiveness and cost. The independent variables
of the experiments were the significance level of the statistical properties, the size of
the training set, and the statistical functions used to identify statistical properties.
The procedure to study the effect of a independent variable was to fix the value of
the other two and to generate 3 different models using 3 different values of the target
variable.

Table 4.3 shows how the independent variables were manipulated to generate 7
different models per artifact. Model A050-T10-Fc is repeated 3 times in the table to
show how the independent variables were manipulated. Still, it was computed once.
The significance levels studied were 0.025, 0.05 and 0.1, which lead to the generation
of models A025-T10-Fc, A050-T10-Fc and A100-T10-Fc. In the case of the training
set size, the values were 5%, 10% and 25% and the models were A050-T05-Fc, A050-

T10-Fc and A050-T25-Fc. Finally, the statistical functions ‘correlation’; ‘mean’ and

www.manaraa.com

63

‘correlation-mean’ (which means that both functions were used) ended up building

models A050-T10-Fc, A050-T10-Fem and A050-T10-Fm.

4.2.2 Execution Traces Collection

The same procedure was used to collect the execution traces of all the artifacts. They
were collected using a ROS utility called rosbag. This tool is able to record every
message sent during run-time by the components of a ROS system into bag files and
save them to disk. These files are stored using a compressed binary format and an
API is provided to retrieve raw information back.

An additional feature of this utility is the ability to split large bags into smaller
ones. This feature was heavily used during experiments 2 and 3 because a flying
session typically included several instances of the same task. In this way, we were
able to generate multiple execution traces per task instance recorded during a single
long flying session. A visualization tool called rzbag, also provided by ROS, was used
to distinguish the different instances.

A Python script was developed to extract the execution traces information from
bag files and to create new trace files using the JSON format accepted by our tool.
This script makes use of the rosbag API.

Two factors constrained the number of traces we collected for the experiments on
the Hummingbirds. First, as quad-rotors move in three dimensions and can achieve a
high speed, a pilot is required to hold the radio controller to take control of the robot
in case that something goes wrong. Second, batteries only last for a maximum of 15
minutes and the replacement process once they drain takes between 2 and 5 minutes.

Still, we collected at least 100 traces per artifact. For the experiments on the Garcia,

www.manaraa.com

64

the limitation were the 90 seconds that took to run the task and to take the robot
from the finish line to the start point.

In the end, every execution trace collected and used in the experiments contains at
least 12 seconds and no more than 15 seconds of the artifact execution. This means
that execution traces for the first artifact have an average of 5210 events, for the
second 6471 events and 6091 events per execution trace of the third artifact.

After each scenario was executed, the traces were classified as successful or faulty
using the objectives described for each artifact previously that were encoded as as-
sertions in the code. Then, the training and test sets were defined. The traces of
the training set were randomly selected successful traces from the training scenario.
The test set consisted of every trace from the test scenario, the faulty traces from the
training scenario, and the successful traces from the training scenario that were not

included in the training set.

4.3 Results

The aim of this section is to present and discuss the results of the performed experi-
ments. First, the statistical properties derived by our approach for each artifact are
introduced. After that, the effects of the independent variables on the approach preci-
sion and recall are analyzed along with an explanation of the specific changes caused
by each variable on the generated models. A discussion about the true negatives and
false positives closes the analysis of the approach effectiveness. After that, the cost
of inferring and monitoring properties are presented along with the effect caused by

the independent variables.

www.manaraa.com

65

Model Name | Wall Ranger Height Vision Height
Following Controller Controller

A025-T10-Fc 5 34 24
A050-T10-Fc 5 35 26
A100-T10-Fc 5 38 27
A050-T05-Fc 5 36 27
A050-T10-Fc 5 35 26
A050-T25-Fc 5 33 22
A050-T10-Fc 5 35 26
A050-T10-Fm 3 42 39
A050-T10-Fcm 8 7 65

Table 4.4: Number of Inferred Statistical Properties

4.3.1 Artifacts Models

Table 4.4 shows the number of properties inferred by each treatment. We can observe
that the number of properties decreases or remains the same with larger training
sets and significance levels, suggesting that weaker properties were discarded. As
expected, the number of inferred properties by model A050-T10-Fcm is the sum of
model A050-T10-Fc and A050-T10-Fm.

For the Garcia Robot, our approach inferred the same 3 mean properties and 5
correlation properties regardless the value of the independent variables. This was
expected as this artifact has only 15 variables and the task does not require a human
operator, making the artifact behavior more consistent. The inferred properties cap-
ture the relationship between the state variables involved in the PID controller that
sets the wheel’s speed, the current distance to the wall, the error (current distance
minus target distance) and the proportional (P) and derivative (D) values of the PID
controller. Listing 4.1 presents the model A025 — T'10 — F'c and shows the specific
properties generated during the training process. For example, the first line indicates

that a correlation relationship exists between the error and the current distance to

www.manaraa.com

66

the wall. The window size of 5 of this property indicates a strong correlation which
is obvious as error = target — left Ranger and target is a constant. The third line
shows a strong correlation between error and P. This makes sense as the P term of
a PID controller is proportional to the error. The larger window size in line number
4 shows a weaker correlation between the commanded speed of the wheel and the D
term of the PID controller. The reason why is weaker is that the speed of the wheel is
a function of several variables such as the difference between the previous and current

error.

Listing 4.1: Model A025-T10-Fc of the Wall Following task

Correlation ,status+error ,leftRanger4+data ,5,0.025
Correlation , motorSpeedLeft+data , status4sum,15,0.025
Correlation ,status+error ,status+P,5,0.025

Correlation ,motorSpeedLeft4+data,status+D,19,0.025

Correlation ,status+P, leftRanger4+data,5,0.025

Several more properties were inferred for the artifacts built on top of the Hum-
mingbird as these are for more complex and larger systems. A group of properties
inferred the correlation between the pilot commands and the navigation angles of
the quad-rotor (e.g, when the commanded pitch increases, the pitch angle increases),
other group captured the correlation relationship between speed and acceleration
(e.g., if x acceleration increases, x speed increases), and another one captured the
correlation between the variables that form part of the height PID controller. In the
case of the ranger height controller, those variables are current height, thrust, P and
D.

On the other hand, the statistical properties of the vision height controller includes
the ball radius, the current pressure, thrust, P and D. We did not find a relevant

pattern among the inferred mean properties except for the fact that 79.7% of the

www.manaraa.com

67

properties of this type had window sizes close to the maximum, indicating that they

may be weaker properties.

o :
o T NN
— 0.05-0.025
P+
\+O.1
S O OO OO OO OO SO SO
S :
O | e X e e,
S
c
il
0
(8]
g
o O L
™~ ' System
—— Ranger HC
Q - —&— Visual HC |....
—+— Garcia
o _.,..
T T T T T T
50 60 70 80 90 100

Recall (%)

Figure 4.5: Effect of Alpha on Fault Detection Effectiveness

4.3.1.1 Effect of Alpha

Figure 4.5 shows how precision and recall change with different significance levels

-axis describe the models recall and the y-axis their precision.

www.manharaa.com

68

Each line corresponds to a particular artifact and the dots corresponds to a particular
model of the artifact. From these graphs, it is possible to observe that with lower
values of alpha, precision increases while recall decreases. This tendency can be
explained by the fact that higher significance levels retain stronger properties and
discard weaker ones. In some situations, a low alpha is not able to discard weak
properties, but instead sets a window size close to the maximum. This makes weak
properties hard to violate causing false negatives.

Figure 4.5 also shows that the models’ precision never stays below 85% for sig-
nificance levels of at least 0.05; however, the models’ recall never reaches 80% for
the second and third artifact. Between the models of these two artifacts, the Vision
Height Controller ones have a higher precision. Our conjecture is that faults related
to inaccurate sensors are easier to identify by our approach than those forced by the
pilot because robots are built under the assumption that sensor have a minimum level
of accuracy. The case of the Garcia robot is different as both precision and recall stay
close to 100% for every value of alpha. As we mentioned before, we attribute this

situation to the limited variability across the scenarios during the task execution.

4.3.1.2 Effect of the Training Set Size

Figure 4.6 shows how different sizes of the training set affect precision and recall.
These figures depict a similar effect than the alpha value. Larger training set sizes
increase precision while reducing recall. For example, the inferred models of the Vision
Height Controller achieve a perfect precision if the training size is of 25%, while recall
is reduced by 11% compared against the recall of training sets of 5%. This means the

inferred models are able to retain most relevant properties when given more training.

www.manaraa.com

69

S
o :
- :
S
< i
o |
S
2 :
8 :
< :
a o | %
~ System
—— Ranger HC
3 —— Visual HC |
—+— Garcia
O _.~V
T T T T T T
50 60 70 80 90 100

Recall (%)

Figure 4.6: Effect of the Training Set Size on Fault Detection Effectiveness

Except for the Garcia robot artifact, small training sets are not capable of remov-
ing many weak properties, hurting the precision of the models. As more traces are

added to the training set, weak properties are removed which improves precision.

www.manharaa.com

70

8] m ...
—
+
: c—-cm
m
A
[S SO S, oL S SU S
4 :
c
S SO SO SO
cm
g
c
il
R
[} :
&) :
a
System
o | B R N S S S
[te} :
> Ranger HC
4 Visual HC
o ... SO SO OO SO
0 i
+ Garcia
O _,.,,
T T T T T T T
40 50 60 70 80 90 100

Recall (%)

Figure 4.7: Effect of the Statistical Function on Fault Detection Effectiveness

4.3.1.3 Effect of the Statistical Functions

Figure 4.7 shows the effect of the used statistical functions on precision and recall
where label ¢ means correlation, label m means mean and label cm means correlation
and mean. These plots show that the statistical function mean does not add much

value. By its own, the mean function classified almost every execution as correct,

www.manharaa.com

71

leading to a almost perfect precision at the expense of a very low recall. When
combined with the correlation function, the results are almost identical to only using
the correlation function. The mean properties did not have any effect over the models

of the Garcia and Vision Height Controller systems because they were never violated.

4.3.1.4 Noticeable True Negatives

The property that detected 90% of the true negatives or unknown behaviors for the
first artifact was the one specified in the 4th row of Table 4.1. This property correlates
the wheel’s speed and the derivative term (D) of the PID controller. By inspecting
the code, we found that the P term is a function of the current error, the D term
is a function of the current error and the previous error and speed is a function of
D and P. During training, as error was low, P and D changed together following a
monotonic relationship. The test scenario breaks the property after the robot reaches
the 45 degree angle in the wall. This cause and abrupt change in the error, and
consequently, P and D changed in different directions.

In the case of the Ranger Height Controller artifact, the most effective statistical
property at detecting violations of the task goals was the property that related the
total acceleration of the quad-rotor and its speed over the z axis. This finding is
correct but non-intuitive, and requires further explanation. During training, as the
pilot performed smooth maneuvers or hovered, both total acceleration and z speed
exhibited small variations apparently in same direction. This behavior created a
strong correlation property with a window of 5. During the test scenario, the quad-
rotor moved at full speed for a few seconds. This action is enough to unbalance the
quad-rotor’s arms. Thus, if the quad-rotor moved forward, then the rear arm would
be higher than the target height, and consequently, the attached sensor ranger as

well. Then, the height PID controller would reduce the drone thrust to adjust it

www.manaraa.com

72

to the correct height. However, even when it is moving at full speed, the artifact
can handle this scenario successfully without violating any property. The violation
actually happened when the pilot breaks the quad-rotor hard by moving full speed
to the opposite direction. At that point, the total acceleration and speed over z still
changed in the same direction, but at different intensities. As the window size was
too small as determined by the training process, the strong correlation did not hold,
and the property was violated.

Two properties revealed 82% of the failures of the Vision Height Controller arti-
fact: the correlation between pressure and radius data and the correlation between
pressure and thrust. These properties were inferred during the training scenario be-
cause they followed the monotonic relationship that they were expected to follow. If
the radius increases, the pressure sensor indicates a lower altitude. However, during
the test scenario, they were frequently violated because the pressure sensor operating
indoors returned bursts of inconsistent data, altering the relationship inferred during

training between radius and thrust.

4.3.1.5 Noticeable False Positives

One property caused 67% of the false positives in the Garcia Robot system. This
property, which captures the correlation between motor speed and sum, is specified
in the second line of Listing 4.1. The sum variable, probably created for debugging
purposes by the system developer, is defined as P + D. We inspected the traces of
these executions and the reason was that a few range messages were lost, causing the
message that adjusts the wheel to not be sent as usual. When range messages were
delivered at the usual rate, a bigger correction was applied with the consequences

explained in 4.3.1.4.

www.manaraa.com

73

During the training scenario of the Ranger Height Controller, a relationship be-
tween the commands pitch and roll was inferred when a training size of 5 was use.
This is a property inferred by chance, which led to many false positives. The reason
why it was inferred was the drift of the used Hummingbird. This drone, if no com-
mands are sent, moves on it own backwards and to the left. This forced the pilot to
apply a pitch and roll in the opposite directions in order to make the drone hover,
originating the property. However, this was not the behavior of the pilot during the
entire training sessions and the property was discarded with a training size of 10,
reducing the number of false positives.

In the case of the Vision Height Controller, an example was the casual correlation
relationship between pressure/radius and the commanded pitch. This property exists
because during one of the training sessions the weather was windy, forcing the pilot to
apply some pitch to keep the quad-rotor on top of the ball. Forcing small variations
on pitch and radius in the same direction originated this casual property that caused
a number of false positives when the smallest training set was used. We note that in

both of the last two scenarios, larger training sets mitigated the false positives.

4.3.2 Cost of Training

We have defined the cost of training as the time required to create the 7 models
specified in Table 4.3. The impact of each independent variable is analyzed separately.

The results reported in this section were collected using the Unix command time.

www.manaraa.com

74

3 ° .
o
System
Ranger HC
Visual HC
o _| Garcia
©
o
(3]
22
3]
E
F
o (-] o
o _|
N
o o °
O —
T T T T T
0.02 0.04 0.06 0.08 0.10
Alpha

Figure 4.8: Effect of Alpha on Cost of Training

4.3.2.1 Effect of Alpha

Figure 4.8 depicts that the value of alpha has an insignificant effect on the time
required to create the artifact’s models. Three seconds is the improvement of the

Ranger Height Controller artifact from the biggest to the smalles significance level.

www.manharaa.com

5

The figure suggests that the cost for the Garcia robot artifact is lower because it
has less variables, the executions traces have less events, and the number of properties
in each model is lower than the other two artifacts.

Figure 4.8 also shows a considerable difference between the cost of training the
Ranger and Vision Height Controller, even when these artifacts share a number of
software components. One reason is that the models of the Ranger Height Controller
have an average of 34 properties while the Vision Height Controller have an average
of 25 properties per model.

It also appears that the number of iterations required to find the optimal windows
size for each property is related to that cost given that the number of properties
remains somewhat stable across the different alpha values. This means that the cost
of the training phase can be adjusted by altering the maximum and/or minimum

windows size or by changing the convergence condition.

4.3.2.2 Effect of the Training Set Size

Figure 4.9 shows the effect of the training set size. On the one hand, the artifact that
incurs in the biggest cost is the Ranger Height Controller. This artifact generated
larger traces and is the artifact with the larger number of properties. On the other
hand, the Garcia robot generates the smallest traces and fewer properties. This
indicates that the effect of the training set on the cost of training is proportional
to the length of the execution traces and the number of properties. More data is
need data to determine the specific impact of each variable. But overall we note that
increases in processing time are proportionally smaller than increases in the training
set size. Furthermore, we have several ideas on how to improve the performance of the
approach by more closely connecting the inference and refinement cycle. We discuss

those further in Chapter 5.

www.manaraa.com

76

8
N System °
Ranger HC
Visual HC
Garcia
o
u') —
—
o
()
L o
g A
|_
(-]
o
Qo _|
n
o
/0
o
(]
° o
o —

I I I I I
5 10 15 20 25

Training Set Size

Figure 4.9: Effect of the Training Set Size on Cost of Training

4.3.2.3 Effect of the Statistical Functions

Figure 4.10 denotes that the cost of processing the mean function is less expensive
than processing the correlation function by several orders of magnitude. For example,

in the case of the Ranger Height Controller, the cost of inferring 77 mean properties

www.manharaa.com

7

System Garcia Robot | Ranger Height Controller | Vision Height Controller
Mean(sec) 0.10 0.11 0.13
SD(sec) 0.08 0.08 0.16

Table 4.5: Overhead

remains below 10 seconds while the cost of inferring 35 correlation properties is 81
seconds.

The figure also depict the cost of training properties with larger window sizes. The
average window size of the correlation properties of the Ranger Height Controller is
17.5 and the average of the window size of the correlation properties of the Vision
Height Controller is 11.6. While the difference is not a considerable, it seems to
contribute significantly in the cost training, in addition to the number of properties.
This can be explained by the fact that the binary-search optimization algorithm tested

larger windows sizes when optimizing the properties of the Ranger Height Controller.

4.3.3 Cost of Monitoring

The cost of monitoring was defined as the total time required to execute the moni-
toring phase of our approach. The monitors were created using the models inferred
in the previous experiment and we measured the time required to process the test
against them. The time required to monitor the conformance of execution traces to
a determined model is considerably lower than the cost of training mainly because
only one iteration is performed during the test phase.

The average overhead of monitoring single traces and the average standard devi-
ation are depicted in table 4.5. We can observe that the overhead does not present
a high variability among artifacts, being higher when monitoring the Vision Height

Controller artifact. An intuition of the reason is given later in this section.

www.manaraa.com

78

8 - .
mm Correlation
= Mean
o _|
©
o
()
L o _|
o <
£
|_
o _|
N
| Il

Garcia RangerHC VisualHC

Figure 4.10: Effect of the Statistical Function on Cost of Training

4.3.3.1 Effect of Alpha

Figure 4.11 shows that alpha has little impact on the time required to monitor a set
of traces. The difference between the Ranger and the Vision Controllers is in average

1.48 seconds. The cost of monitoring the Garcia Robot is only 7.2 seconds lower on

average.

www.manharaa.com

79

o _|
[e6]
System
Ranger HC
Visual HC
o _| Garcia
(e}
o
()
22
()
£
F
o _|
N
8 8 8
° o o
O —
T T T T T
0.02 0.04 0.06 0.08 0.10

Alpha

Figure 4.11: Effect of Alpha on Cost of Monitoring
Considering each system in isolation, it can be observed that the required time

increases a slightly with higher values of alpha as this favors the inference of weak

properties. The difference between the bigger and smaller alpha is 2.1 seconds on

average.

www.manharaa.com

80

o _|
[e6]
System
Ranger HC
Visual HC
o _| Garcia
(e}
o
()
22
()
£
F
o _|
N
8 8 8
° ° °
o —
T T T T T
5 10 15 20 25

Training Set Size

Figure 4.12: Effect of the Training Set Size on Cost of Monitoring

4.3.3.2 Effect of the Training Set Size

Figure 4.12 shows the effect of the training set size on the cost of monitoring. The
required time barely increases with lower training set sizes because those models con-

tain weaker properties while models generated with large training sets discard some

www.manharaa.com

81

of those properties, saving some monitoring time. The average difference between a

training set of 5% and 25% for all systems is 0.89 seconds.

4.3.3.3 Effect of the Statistical Functions

Figure 4.13 denotes that the required time for monitoring correlation and mean prop-
erties is similar. A reason of this result is that the number of mean properties inferred
is more than two times the inferred correlation properties. Another situation that
balanced the costs between correlation and mean is that the mean properties are

never violated, so the are monitored thoughout the entire process.

4.4 Alternative Methods

Using the same artifacts and the collected set of traces, we evaluated the fault de-
tection power of properties generated by Daikon, a state properties inference tool,
and compared it against statistical properties obtained with an alpha of 0.05 and
correlation function. We faced several challenges in order to perform this comparison
because there are not free automatic inferencing tools that can handle the distributed
systems we are working with. As a result, we had to adapt Daikon to work at the
message level as our tool does in order to achieve a fair comparison in terms of fault
detection. Our adaptation required that the invariant inferencing and checking have
to run separately for each component of the system. As Daikon does not have a
parameter equivalent to the significance level of statistical properties, we have per-
formed this comparison using just different training set sizes. Table 4.6 shows the
number of invariants inferred by Daikon for each of the artifacts and training set

sizes. The table shows that more training reduces the number of inferred state prop-

www.manaraa.com

82

mm Correlation
= Mean

12

10
|

Time (sec)

Garcia RangerHC VisualHC

Figure 4.13: Effect of the Statistical Function on Cost of Monitoring

erties. However, the number of inferred state properties is considerably larger than
the number of inferred statistical properties (Table 4.4).

Figure 4.14 shows the precision and recall of the state properties inferred with
Daikon and the inferred statistical properties for the Wall Following task. In the figure
it can be observed that Daikon was able to detect every faulty trace in the test set as

faulty because the assertion that we used to classify them is an instance of Daikon’s

www.manharaa.com

83

Training Set | Wall Ranger Height Vision Height
Size Following Controller Controller

5% 33 586 2392
10% 31 574 2040
25% 26 546 1830

Table 4.6: Number of Invariants Inferred by Daikon

templates. The inferred invariant was target — left Ranger < 89 and the assertion
that we used to classify traces was target — left Ranger < 100. The invariant that
caused most of the false positives with a small training set was the casual relationship
right Motor Speed < target. We did not find any reason other than chance to explain
why the relationship held for the smaller training set. The small difference in precision
between the smallest and largest training set sizes suggests that statistical properties
need less training data to achieve higher precision while recall remains comparable.
Figure 4.15 shows the results of the state properties inferred with Daikon and
the statistical properties infered by our approach for the Ranger Height Controller
task. The analysis of the violated invariants shows that the stronger state properties
are those that included the speed of the quad-rotor. During training, the speed of
the quad-rotor was maintained low while during test almost maximum speed was
achieved. The lower precision of state properties was caused by those defining a max-
imum or minimum limit for altitude, pitch, roll, yaw, velocity or acceleration. They
were violated easily when the pilot performed slightly different maneuvers during
monitoring. Statistical properties seemed more tolerant to low quality test suites as
they capture more fundamental relationships between variables and not just absolute
values. As before, statistical properties required a smaller training set to achieve
higher precision but their recall never reach 80%. State properties still keep perfect

recall but precision barely passes 70% with the largest training set.

www.manaraa.com

84

o
o
—
R R I
© :
N S N S
¢ : :
10% &
c
ke e e oo
R :
Q :
&) :
a
s| T
Type of Properties
—e— Statistical Prop.
o | Y
0 i
—&— State Properties
50 A
L O OSSOSO OSSO SO OO OO O OO OO OSSOSO SO
N §
T T T T T
80 85 90 95 100

Recall (%)

Figure 4.14: Wall Following - Comparison of inferred statistical properties against
state properties inferred through Daikon using different training set sizes

Figure 4.16 shows similar results than the previous two figures except that the
precision of the Daikon invariants are below 45%. This can be related to the large
number of invariants inferred for this system, most of them uninteresting and highly
dependent of the test suite. Invariants considering pressure sensor readings were the

strong ones that classified the test set traces as faulty. False positives instead were

www.manharaa.com

85

o
O B RR R R R R R TR LR ST SRS TR TR B I
—
: : 25064
ST OO OO A R R
PSS O S N RS SRR S
~ O
c
il
7]
(&)
o e e e e b
a
O ..l e
~ : : 0/ A
Type of Properties 10%
...................... Statstical Prop.
8 J I —A— State Properties
' 5% &
T T I T T
60 70 80 90 100

Recall (%)

Figure 4.15: Ranger Height Controller - Comparison of inferred statistical properties
against state properties inferred through Daikon using different training set sizes

caused by of invariants modeling ranges of navigation data as altitude, pitch, roll,
yaw, velocity or acceleration.

Table 4.7 provides a comparison of the infering and monitoring cost of state and
statistical properties. The cost of state properties should be viewed with caution as

we used a version of Daikon that operates on message data instead of method entry

www.manharaa.com

86

o
‘C_|> PP o ..
ZSN
210%
ol 5%
® : :
S O T S S A S
c
S O O SO S S S
%) : ,
o 250/5
—_ : 0
= T S OO SO SN
< :
Type of Properties
—— Statistical Prop.
8 P I ,.‘
—&— State Properties
10%4
59 2
o _ ,,,,,,
T T T | T T
50 60 70 80 90 100

Recall (%)

Figure 4.16: Visual Height Controller - Comparison of inferred statistical properties
against state properties inferred through Daikon using different training set sizes

and exit data. These changes forced us to run the inference and monitoring process
of state properties on individual nodes. For example, for the Visual Height Controller
and a given training set size, we run the inference process 17 times, 1 per component,
and the monitoring process another 17 times. The values shown in Table 4.7 for state

properties are the sum of those 17 executions. Compared to our approach that only

www.manharaa.com

87

Cost Training Cost Monitoring

Artifact Prop. Type —=o0% [25% | 5% [10% | 25%
Wall following Statistical 5.7 83| 14.7 7.8 7.3 7.2

State 5.3 7.5 13.8 | 135.5 | 151.1 | 152.2
Ranger Height | Statistical 41.6 | 80.2 | 195.9 159 | 15.0 | 14.6
Controller State 10.1 | 20.2 | 50.6 | 953.0 | 857.7 | 810.1
Visual Height | Statistical 15.1 | 254 | 57.7 15.0 | 142 | 134
Controller State 27.8 | 54.2 | 135.4 | 1015.2 | 913.7 | 862.9

Table 4.7: Cost of Inferring and Monitoring in Seconds

runs once for the entire system, this added a considerable extra overhead caused by
the creation of new OS processes and 1/O operations. This extra overhead and the
considerable larger number of state properties made their cost of monitoring higher
than monitoring statistical properties. The window optimization process incurs in a
large overhead when inferring statistical properties making them more costly to infer
than state properties. However, in the case of the Visual Height Controller, as the
number of inferred state properties is so large (an average of 2087 for the three training
set sizes) the inferring cost is indeed larger than inferring statistical properties. In
spite of the relative differences in time, we can observe that in both cases the cost of
inferring increases with the training set and the monitoring cost instead decreases as

a consequence of the lower number of state properties to check.

4.5 Summary

The results of the performed experiments showed a number of interesting character-
istics of our approach. In the first place, the results show that correlation properties
achieved a precision of 91.1% on average across all artifacts with a training set of
10%, and recall levels of over 77.8%. Properties using the mean function, however,

were not as effective. We also understand how weak properties hurt the precision of

www.manaraa.com

88

models and how they can be reduced by increasing the significance level and the size
of the training set. Figures 4.5 and 4.6 depicts that these corrective techniques also
caused a decrease of recall, but at a lower rate.

The study of the time incurred in creating models and checking properties sug-
gests that the cost of training is a function of the number of traces in the training
set, the size of those traces, the number of properties inferred, their windows and
the condition that marks the end of the training phase. These are assumptions due
to the lack of comparative data. We assume that the bottleneck of the inferenc-
ing process is the optimization procedure. During the first iteration, training phase
has to deal with a large number of statistical properties. Concretely, n properties per
SingleV ariableStatistical Property and nx(n—1) per CompoundStatistical Propertey.

As expected, the cost of monitoring is significantly lower than the cost of training.
The fact that the significance level does seem to affect the cost of monitoring is
encouraging because suggest that stronger properties do not incur in more overhead.

Compared to automatically inferred state properties, our experiments showed that
statistical properties require less training data to achieve higher precision than state
properties. Also, state properties are highly sensitive to the test suite quality while
statistical properties seem to better tolerate this type of variation. Like statistical
properties, the cost of infering and monitoring state properties is proportional to the

training set and the number of inferred properties to check.

www.manaraa.com

89

Chapter 5

Conclusions and Future Work

In this work, we have introduced a new type of software properties called Statistical
Properties which characterize the behavior of software systems by identifying statis-
tically significant relationships between a window of values of their variables. These
properties can be inferred efficiently using automatic techniques and used to check
deeper aspects of the behavior of the system under analysis. We have also devel-
oped approaches to automatically infer and monitor these statistical properties. The
inference approach discovers instances of statistical properties specified in a set of
pre-defined property templates and optimizes their window size so the incurred over-
head is as low as possible while the required significance is maintained. Mechanisms
to eliminate weaker properties and handle tuples of variables with different updates
rates were developed as well. Our approach considers that the information passed
through messages can represent the system behavior. If the traced variables do not
contain fundamental information about the system operations, statistical properties
inferred from those traces will have little fault detection power.

We have also implemented these approaches and two properties templates: cor-

relation and mean. Third parties can use our implementation simply by formatting

www.manaraa.com

90

execution traces as a sequence of JSON objects and augment the set of property
templates by extending an abstract class which takes care of interacting with our
implementation.

We have assessed our approach against three distributed software systems that
control robotic platforms. The approach was able to infer interesting properties for
all the three systems we studied, and the assessment showed what factors contributed
the most to its effectiveness. More specifically, the higher significance levels and larger
training sets lead to the identification of strong correlation properties that characterize
the systems operations with a higher precision with minimal reduction in terms of
recall. The results also show that stronger statistical properties have smaller window
sizes which implies a reduction in the monitoring cost.

In the future, we will expand this work in several directions. First, we need to
conduct more extensive comparison of statistical properties against state properties,
and also start a comparison versus temporal properties to allow us to more precisely
locate statistical properties in the cost-effectiveness spectrum. The major challenge
to accomplish this is to identify inference tools that are robust enough to work on the
systems we are targeting.

Second, we will also define new statistical property templates and evaluate their
efficiency. More specifically, we are considering properties that focus on the distribu-
tion of variables and properties that performs analysis of variances and covariances.
We would also like to study the effect of the minimum and maximum window sizes
defined by property templates since these parameters can affect the cost of inferring
by reducing the number of iterations during the optimization process. Similarly, we
would like to develop and study more complex update policies to accommodate vari-
ables with different frequencies and also occurring in different parts of the system. In

addition, we would like to investigate the performance of our approach on different

www.manaraa.com

91

languages and architectures to better understand the generality of our approach. Fur-
thermore, although the approach effectiveness was shown for systems whose behavior
was dominates by controllers, it would be interesting to observe it on a broader kind
of systems.

Third, we plan to adapt our tool to enable on-line verification of statistical proper-
ties. We are considering different options depending on whether the involved variables
resides in the same program or are distributed across programs. Encoding monitors
into the program is a viable option for single programs. A plausible approach for com-
pound properties located across different processes is to create an observer process
that subscribes to the topics containing the variables of interest. When moving the
approach to operate on-line, we would like to explore how to do sampling to control
the technique’s overhead without losing effectiveness. We conjecture that sampling
could be embedded into the policy structure to, for example, reduce the monitoring
frequency of properties that are unlikely to fail.

Fourth, we plan to explore if statistical properties are able to predict faults, instead
of just detecting the occurrence of faults, in order to take corrective actions to prevent
them. Initially, we would like to prevent the last action that causes the fault. In a
more advanced stage, the goal would be to learn a sequence of events or a tendency

that leads to faults and take a corrective action earlier.

www.manaraa.com

92

Appendix A

Statistical Tables

www.manharaa.com

93

n a=005 aa=0.025 a=0.01 o=0.005
5 0.900
6 0.829 0.886 0.943
7 0.714 0.786 0.893
8 0.643 0.738 0.833 0.881
9 0.600 0.683 0.783 0.833
10 0.564 0.648 0.745 0.794
11 0.523 0.623 0.736 0.818
12 0.497 0.591 0.703 0.780
13 0.475 0.566 0.673 0.745
14 0.457 0.545 0.646 0.716
15 0.441 0.525 0.623 0.689
16 0.425 0.507 0.601 0.666
17 0.412 0.490 0.582 0.645
18 0.399 0.476 0.564 0.625
19 0.388 0.462 0.549 0.608
20 0.377 0.450 0.534 0.591
21 0.368 0.438 0.521 0.576
22 0.359 0.428 0.508 0.562
23 0.351 0.418 0.496 0.549
24 0.343 0.409 0.485 0.537
25 0.336 0.400 0.475 0.526
26 0.329 0.392 0.465 0.515
27 0.323 0.385 0.456 0.505
28 0.317 0.377 0.448 0.496
29 0.311 0.370 0.440 0.487
30 0.305 0.364 0.432 0.478

Table A.1: Critical Values for Spearman’s Rank Correlation Coefficients

www.manharaa.com

94

Appendix B

Ranger Height Controller System

www.manharaa.com

95

/rosout_agg

/rosout

/debug/ctrID

/EnableControl

/debug/ctrIP

—> /debug/ctrll

/actualHeightTarget

/FilteredDown

/FilteredUp

[TargetHeight

/mav/cmd_thrust

Figure B.1: PID Controller Subsystem

www.manharaa.com

96

/ADC4 /RawDown

/ADC3 /FilteredDown

/ADC2 . /FilteredUp

/zigbeeRanger

/ADC1 /RawUp

/ADCO /CeilingHeight

/DI08

/rosout

/DIO5

7
/zigbeeNode

/RemoteATResponse

/D107

/DIO6 /RemoteATCommand

/DIO1

/DIO0

/DIO3

/D102

Figure B.2: Ranger Subsystem

www.manharaa.com

97

S
S}
(&)
o
o
®
c
)
€

JO sioj0w 19s/depd9310swaiw/

1ybi1aHI=bIel/

soppsoubelp/

U0~ SJ030W }2S/dRNIDIISYIW/ tve

Ao[>330s8/ Aol/

[|0J” pwd/Aew/ 1N0s0./

914 MeA puwd/Aewl/ Bbbe 1nosou/

Figure B.3: User Commands Subsystem

youd pwd/Aewy/

98

ndui 1> penby/e/

qe Indui3o/e/

apnjije 3(qns oiaz/e/

indui"uonubye/

nduijinuze/ é

pw> uoniubi/e/

Inosol/

b6be3nosol/

Figure B.4: Serial Communication Subsystem - Part 1

S
S}
(&)
o
o
®
c
)
€

99

asod palqgns/e/

sdbj0qoy/e/

smejs joqoJy/e/

asodAem pid/e/

wwod-30qo./e/ elep q j0qoi/e/

joid j0q04/B/

nwi joqoJ/e/

andui 33 730q0.//

suesy joqol/e/

sdb 3dalgns/e/

sdb jjod/e/

llod 30qou/e/ | sniejs |jod/e/

Figure B.5: Serial Communication Subsystem - Part 2

S
S}
(&)
o
o
®
c
)
€

100

S
S}
(&)
o
o
®
c
)
€

100" pwd/AeW/

ndur pid/e/

\

snjels 1da3lqns/e/

yoyd pwd/Aew/

ejep xujoqoi/e/

paJayjy ybiay ainssaid/new/

depdasyaw/

ISnIYY pwd/Aew/

uo si0jow 33s/depwdaPsyIIwW/

?1e1s 430 103lgns/e/

10 s10j0wW 33s/depda3asyIIw/

Figure B.6: Serial Communication Subsystem - Part 3

101

Appendix C

Vision Height Controller System

www.manharaa.com

102

/rosout

/rosout_agg

/asctecHeight/set_hover_thrust

/asctecHeight/pressure_diff

/PIDz/Data

/mav/cmd_thrust

/asctecHeight/set_land_state

/asctecHeight

/asctecHeight/applied_thrust

/asctecHeight/modified_pressure

/asctecHeight/set_min_thrust

/asctecHeight/set_max_thrust

Figure C.1: PID Controller Subsystem

www.manharaa.com

103

/rosout

/rosout_agg

/PIDz/Data

/pressurePID/setl

/pressurePID/setD

/pressurePID/set_radius_weight

/pressurePID/set_default_target_height

/asctecHeight/pressure_diff

/pressurePID/set_min_height /pressurePID

/asctecHeight/pressure

/pressurePID/setWeight

/pressurePID/set_max_height

/pressurePID/set_ground_height

/pressurePID/setP

/mav/pressure_height_filtered

Figure C.2: Pressure Subsystem

www.manharaa.com

104

as/zaid/

did/zaid/

1//zAid/ |

d/A/zaid/

eled/zaid/

zqid/

uoneso|jeq/ A|e

BAI1923./X3X/ TeA’

puas/xaxd/

yb1oMIas/zald/

9zIs”snipeJ 3nesap 19s/zdld/

139s/zaid/

aiss/zaid/

di9s/zaid/

1n0soJ/

66e 3n0sol/

www.manharaa.com

*b & I Figure C.3: Radius Subsystem
ol LAl ‘U I_[L

105

ndui 1> penby/e/

qe Indui3o/e/

apnjije 3(qns oiaz/e/

indui"uonubye/

nduijinuze/ é

pw> uoniubi/e/

Inosol/

b6be3nosol/

Figure C.4: Serial Communication Subsystem - Part 1

S
S}
(&)
o
o
®
c
)
€

106

S
S}
(&)
o
o
®
c
)
€

asod palqgns/e/

sdbj0qoy/e/

smejs joqoJy/e/

asodAem pid/e/

andui 33 730q0.//

suesy joqol/e/

wwod 30qo./e/ eyep x3 j0qoly/e/ joid j0q04/B/

sdb 3dalgns/e/

sdb jjod/e/

llod 30qou/e/ | sniejs |jod/e/

nwi joqoJ/e/

Figure C.5: Serial Communication Subsystem - Part 2

107

indui"pid/e/

pa1ayy 1ybiay ainssaid/Aew/ |

231e1s 430 303lgns/e/

depda12syawy/

|

sme3s 10algns/e/

|

ejep xJ 30qoJ/e/

1SnJyy pwd/Aew/

U0 si0jow 313s/deyda32syIwy/

1J0” s10j0w 33s/depda31dsyaiw/

AX/AX223058/

Figure C.6: Serial Communication Subsystem - Part 3

S
S}
(&)
o
o
®
c
)
€

108

Bibliography

[1] Acroname garcia custom robot. http://www.acroname.com/garcia/garcia.html.

[2] AscTec hummingbird autopilot. http://www.asctec.de/asctec-hummingbird-

autopilot-5/.
[3] JSON javascript object notation. http://www.json.org/.
[4] Ros. http://www.ros.org.
[5] Probability € Statistics for Engineers € Scientists. Pearson Education, 2007.

6] Naoki Abe and Manfred K. Warmuth. On the computational complexity of
approximating distributions by probabilistic automata. In Proceedings of the
third annual workshop on Computational learning theory, COLT 90, pages 52—
66, San Francisco, CA, USA, 1990. Morgan Kaufmann Publishers Inc.

[7] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha
Kuzins, Ondiej Lhotdk, Oege de Moor, Damien Sereni, Ganesh Sittampalam,
and Julian Tibble. Adding trace matching with free variables to AspectJ. SIG-
PLAN Not., 40(10):345-364, October 2005.

[8] Glenn Ammons, Rastislav Bodik, and James R. Larus. Mining specifications.

In Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles

www.manharaa.com

[10]

[11]

[14]

[15]

109

of programming languages, POPL ’02, pages 4-16, New York, NY, USA, 2002.
ACM.

Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert Brayton. Verifying

continuous time markov chains. pages 269-276. Springer, 1996.

Adnan Aziz, Vigyan Singhal, Felice Balarin, Robert K. Brayton, and Alberto L.
Sangiovanni-vincentelli. It usually works: The temporal logic of stochastic sys-

tems. pages 155-165. Springer, 1995.

Christel Baier, Joost pieter Katoen, and Holger Hermanns. Approximate sym-
bolic model checking of continuous-time markov chains (extended abstract),

1999.

A. W. Biermann and J. A. Feldman. On the synthesis of finite-state machines
from samples of their behavior. IEEE Trans. Comput., 21(6):592-597, June 1972.

Eric Bodden. Specifying and exploiting advice-execution ordering using depen-
dency state machines. In International Workshop on the Foundations of Aspect-

Oriented Languages (FOAL), March 2010.

P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: a declarative
language for real-time programming. In Proceedings of the 14th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, POPL 87, pages
178-188, New York, NY, USA, 1987. ACM.

Feng Chen, Marcelo d’Amorim, and Grigore Rosu. Checking and correcting
behaviors of Java programs at runtime with Java-MOP. FElectron. Notes Theor.

Comput. Sci., 144(4):3-20, May 2006.

www.manaraa.com

110

[16] Feng Chen and Grigore Rogu. Mop: an efficient and generic runtime verification

framework. SIGPLAN Not., 42(10):569-588, October 2007.

[17] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and J. F.
Quesada. Maude: specification and programming in rewriting logic. Theor.

Comput. Sci., 285(2):187-243, August 2002.

[18] Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. DySy: dynamic
symbolic execution for invariant inference. In Proceedings of the 30th interna-
tional conference on Software engineering, ICSE "08, pages 281-290, New York,
NY, USA, 2008. ACM.

[19] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in
property specifications for finite-state verification. In Proceedings of the 21st

international conference on Software engineering, ICSE 99, pages 411-420, New

York, NY, USA, 1999. ACM.

[20] E. Allen Emerson. Handbook of theoretical computer science (vol. b). chapter
Temporal and modal logic, pages 995-1072. MIT Press, Cambridge, MA, USA,
1990.

[21] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dy-
namically discovering likely program invariants to support program evolution. In

Proceedings of the 21st international conference on Software engineering, ICSE

'99, pages 213-224, New York, NY, USA, 1999. ACM.

[22] Mark Gabel and Zhendong Su. Javert: fully automatic mining of general tem-
poral properties from dynamic traces. In Proceedings of the 16th ACM SIG-
SOFT International Symposium on Foundations of software engineering, SIG-

SOET 08/FSE-16, pages 339-349, New York, NY, USA, 2008. ACM.

www.manaraa.com

[23]

[24]

[25]

[27]

28]

[29]

111

Mark Gabel and Zhendong Su. Online inference and enforcement of temporal
properties. In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ICSE 10, pages 15-24, New York, NY, USA,
2010. ACM.

Lars Grunske. Specification patterns for probabilistic quality properties. In
Proceedings of the 30th international conference on Software engineering, ICSE

08, pages 31-40, New York, NY, USA, 2008. ACM.

Sudheendra Hangal and Monica S. Lam. Tracking down software bugs using au-
tomatic anomaly detection. In Proceedings of the 24th International Conference
on Software Engineering, ICSE "02, pages 291-301, New York, NY, USA, 2002.
ACM.

Hans Hansson and Bengt Jonsson. A logic for reasoning about time and relia-

bility. Formal Aspects of Computing, 6:512-535, 1994. 10.1007/BF01211866.

Klaus Havelund and Grigore Rogu. An overview of the runtime verification tool

Java PathExplorer. Form. Methods Syst. Des., 24(2):189-215, March 2004.

Gerard J. Holzmann. The logic of bugs. In Proceedings of the 10th ACM SIG-
SOFT symposium on Foundations of software engineering, SIGSOFT *02/FSE-
10, pages 81-87, New York, NY, USA, 2002. ACM.

Michael Kearns, Yishay Mansour, Dana Ron, Ronitt Rubinfeld, Robert E.
Schapire, and Linda Sellie. On the learnability of discrete distributions. In Pro-

ceedings of the twenty-sixth annual ACM symposium on Theory of computing,
STOC 94, pages 273-282, New York, NY, USA, 1994. ACM.

www.manaraa.com

112

[30] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of AspectJ. In Proceedings of the 15th Euro-
pean Conference on Object-Oriented Programming, ECOOP 01, pages 327-353,
London, UK, UK, 2001. Springer-Verlag.

[31] Fred Kroger and Stephan Merz. Temporal Logic and State Systems (Texts in The-
oretical Computer Science. An EATCS Series). Springer Publishing Company,

Incorporated, 1 edition, 2008.

[32] Ingolf H. Kriiger, Gunny Lee, and Michael Meisinger. Automating software
architecture exploration with m2aspects. In Proceedings of the 2006 interna-
tional workshop on Scenarios and state machines: models, algorithms, and tools,

SCESM 06, pages 51-58, New York, NY, USA, 2006. ACM.

[33] Leslie Lamport. The temporal logic of actions. ACM Trans. Program. Lang.
Syst., 16(3):872-923, May 1994.

[34] Gary T. Leavens. Tutorial on JML, the Java modeling language. In Proceedings of
the twenty-second IEEE/ACM international conference on Automated software
engineering, ASE ’07, pages 573-573, New York, NY, USA, 2007. ACM.

[35] David Lo, Siau-Cheng Khoo, and Chao Liu. Mining temporal rules for software
maintenance. J. Softw. Maint. Evol., 20(4):227-247, July 2008.

[36] David Lo, Leonardo Mariani, and Mauro Pezze. Automatic steering of behav-
ioral model inference. In Proceedings of the the 7th joint meeting of the Eu-
ropean software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, ESEC/FSE ’09, pages 345-354, New
York, NY, USA, 2009. ACM.

www.manaraa.com

113

[37] Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent

systems. Springer-Verlag New York, Inc., New York, NY, USA, 1992.

[38] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, pages 46-57, Washington, DC,
USA, 1977. IEEE Computer Society.

[39] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-
nery. Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cam-
bridge University Press, New York, NY, USA, 3 edition, 2007.

[40] John Whaley, Michael C. Martin, and Monica S. Lam. Automatic extraction of
object-oriented component interfaces. In Proceedings of the 2002 ACM SIGSOFT

international symposium on Software testing and analysis, ISSTA 02, pages 218~

228, New York, NY, USA, 2002. ACM.

[41] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir
Das. Perracotta: mining temporal API rules from imperfect traces. In Pro-
ceedings of the 28th international conference on Software engineering, ICSE ’06,

pages 282-291, New York, NY, USA, 2006. ACM.

[42] Wlodzimierz M. Zuberek. Performance evaluation using extended petri nets. In
International Workshop on Timed Petri Nets, pages 272278, Washington, DC,
USA, 1985. IEEE Computer Society.

www.manharaa.com

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	8-2012

	Statistical Software Properties: Definition, Inference and Monitoring
	Javier A. Darsie

	tmp.1351440242.pdf.wv4Jq

